The Knapsack Problem

 $W, \{w_i\}, \{v_i\}$ $\max \sum_{\substack{j \ \text{subset} \\ \text{of } i}} v_j \mid \sum_j w_j \le W$

A knapsack in the real world can be a shipping container, a transport plane, or a warehouse.

Classic formulation (statement)

Fit the most valuable set of items without exceeding knapsack capacity

© 2024 Dr. Muhammad Al-Hashimi

Knapsack Problem Brute Force Approach

Exhaustive search

Solution Service Additional Consider <u>all possible</u> item <u>subsets</u>

Solution Calculate weight for each

Solution Pick a highest-value subset that fits

Quiz In the example, how many subsets are there to consider? How do we know in general (for *n* items)?

© 2024 Dr. Muhammad Al-Hashimi

Example (later)

 $W, \{w_i\}, \{v_i\}$ W=10 $w=\{3, 6, 5, 2\}$ $v=\{15, 45, 35, 40\}$

Combinatorial Objects

▷ Index set? ▷ Power set

Items from a finite set may be <u>combined</u> in many ways to create interesting objects, which can be expressed as sequences of item indices.

Finite sets

Index set $\{1, 2, 3, 4, ..., n\}$

2 generation questions

List set members: permutations

123 132 312 321 231 213

Service Set Members: *subsets*

 $\varphi \ \{1\} \ \{2\} \ \{3\} \ \{1,2\} \ \{1,3\} \ \{2,3\} \ \{1,2,3\}$

© 2024 Dr. Muhammad Al-Hashimi

Useful Tools Counting Review

Quiz

Which **question** answers the quiz about the number of subsets to consider in the example? Tricky, think about it (answer below)

3 great combinatorial questions for any set of *n* items

• How many ways to order?

(2,1).

0

0

Quiz Why did selection sort, worst-case insertion sort and unique elements have exactly the same number of basic ops?

© 2024 Dr. Muhammad Al-Hashimi

Count (1,2) as different than **2** How many pairs (ways to pair)?

• How many <u>distinct</u> pairs?

."192 lamitqO nA" beltit bread elile shi ni zinp shi wollo³ vomener, the 3rd helps. vone of them directly,

The Knapsack Problem An Optimal Subset

Exercise	Subset	Weight	Value	
Simulate an algorithm to identify the optimal subset.	ϕ	0	0	{1 2 3 4}
Hint : go line by line, record latest encountered max (<i>don't</i>	$\{1\}$	3	15	
look at the whole table).	$\{2\}$	6	45	
	$\{3\}$	5	35	\$15 2 \$45
•	$\{4\}$	2	40	3 6
Quiz 1	$\{1,2\}$	9	60	
(a) Which counting for- mula is used to count sub-	$\{1,3\}$	8	50	
sets of size two? (b) What's	$\{1,4\}$	5	55	2 5
the general formula for any size (<i>i</i>)? (c) Write a sum for	$\{2,3\}$ 11 - \$4	\$40 4 3 \$35		
total number of subsets.	$\{2,4\}$	8	85	
	${3,4}$	7	75	
	$\{1,2,3\}$	14	—	🖙 Unique?
	$\{1,2,4\}$	11	—	1
	$\{1,3,4\}$	10	90	Efficiency?
	$\{2,3,4\}$	- 13	_	WolframAlpha
ļ	${1,2,3,4}$	} 16	—	5 How bad? next

© 2024 Dr. Muhammad Al-Hashimi

Exponential Growth A Visualization

Exponential Run Time Visualization						
Input Size	Basic Op Count	Run Time (s)*	Run Time (Yr)			
10	1024	0	0			
25	33554432		0			
50	1,125,899,906,842,620	1	0			
75	37778931862957200000000	37778932	1			
100	12676506002282300000000000000000	1267650600228230	<mark>40,170,303</mark>			

*Assuming a computer that can sustain 1 **petaflops** (10¹⁵ floating-point operations per second), 1 basic op \equiv average-flop

According to plate tectonics theory, 40 million years ago India had not yet collided (fully perhaps) with Asia! https://en.wikipedia.org/wiki/Plate_tectonics

Quiz What if a top (as of 2020) 100 peta-flop supercomputer was used? *Assume linear scaling, which is not realistic.*

© 2024 Dr. Muhammad Al-Hashimi

Ron Blakey, NAU Geology, CCA-by-SA 4.0 License

cs681fig9-10.cdr Tuesday, March 12, 2024 3:26:42 PM Color profile: Disabled Composite Default screen

The Traveling Salesman Problem

Exercise Specify the formal inputs to the **TSP**, and give 1–2 instances.

Classic formulation (statement)

Shortest tour through a set of cities visiting each exactly once before returning to the start city

© 2024 Dr. Muhammad Al-Hashimi

Traveling Salesman Problem Brute Force Approach

Exhaustive search

Consider <u>all possible</u> tours
 Calculate the length of each tour

Pick one with minimum length

© 2024 Dr. Muhammad Al-Hashimi

Traveling Salesman Problem Modeling Hamiltonian circuit

this HC?

0

The TSP is converted to a weighted graph problem. Find the best HC

Exercise Lookup other formulations of (ways to state) the TSP. Discuss at least 2. Share in course group.

© 2024 Dr. Muhammad Al-Hashimi

Min total weights for shortest tour Largest profit? pick max total weights

Traveling Salesman Problem Hamiltonian Circuits

Quiz

3 Observations

2 n+1 vertices (n-1 distinct)

Check the tour length of abcdea above if it starts at b and write the resulting HC. Any different from TSP view?	1,2,3,4,5,1 ▶ 1, 3,2 ,4,5,1 × 1,4,2,3,5,1	24 25 28	1,5,2,4,3,1 1,2,5,4,3,1 1,4,5,2,3,1	29 20 24	Exercise Identify the tour of <u>opposite</u> direction to indicated one. Can we safely exclude it?
Quiz	1,2,4,3,5,1	24	$1,\!5,\!4,\!2,\!3,\!1$	25	ຢ rule?
$\nabla \nabla \nabla \nabla \nabla \nabla$ torial objects in this	$1,\!3,\!4,\!2,\!5,\!1$	29	$1,\!2,\!4,\!5,\!3,\!1$	16	iuic.
a - 3 1 5 8 start/end at a?	$1,\!4,\!3,\!2,\!5,\!1$	32	$1,\!4,\!2,\!5,\!3,\!1$	24	
b 3 – 6 7 9	$1,\!4,\!3,\!5,\!2,\!1$	23	$1,\!3,\!2,\!5,\!4,\!1$	24	
c 1 6 – 4 2 d 5 7 4 – 3	$1,\!3,\!4,\!5,\!2,\!1$	20	$1,\!2,\!3,\!5,\!4,\!1$	19	
e 8 9 2 3 -	1, 5, 4, 3, 2, 1	24	1, 5, 3, 2, 4, 1	28	
Exercise	$1,\!4,\!5,\!3,\!2,\!1$	19	$1,\!3,\!5,\!2,\!4,\!1$	24	
Write HC starting with b ,	1,3,5,4,2,1	16	1,2,5,3,4,1	23	
match with ones in figure).	1,5,3,4,2,1	24	1,5,2,3,4,1	32	
© 2024 Dr. Muhammad Al-Hashimi			, , , , , , ,		KAU • CS-681 1

0

Traveling Salesman Problem An Optimal Tour

⇒ 2-before-3 rule

Essentially, only check <u>distinct tours</u> by eliminating opposite and alternate startverts versions.

Exercise Write the component distances of indicated tours.

Exercise Highlight below the optimal HC, show weights.

© 2024 Dr. Muhammad Al-Hashimi

-		
3 , 2 , 3 ,4,5,1	?	
$1,\!4,\!2,\!3,\!5,\!1$	28	?
$1,\!2,\!4,\!3,\!5,\!1$	24	
$1,\!5,\!2,\!4,\!3,\!1$	29	
$1,\!2,\!5,\!4,\!3,\!1$	20	
$1,\!4,\!5,\!2,\!3,\!1$	24	
$1,\!5,\!4,\!2,\!3,\!1$	25	
▶ 1,2,4,5,3,1	16	
$1,\!4,\!2,\!5,\!3,\!1$	24	
$1,\!2,\!3,\!5,\!4,\!1$	19	?
$1,\!2,\!5,\!3,\!4,\!1$	23	
$1,\!5,\!2,\!3,\!4,\!1$	32	

▷ Unique?
▷ Count? In general

Traveling Salesman Problem Efficiency

Exhaustive search: counts

- All tours: example, general
- Single start-end city
- Distinct HC

Start-stop at a city: (n-1)!, therefore all $(n-1)! \times n = n!$, (n-1)!/2 distinct.

Exercise (1) How many tours <u>need</u> to be checked if we double cities to 10? How many fold was the increase?

© 2024 Dr. Muhammad Al-Hashimi

A warning

Example deceptive, only a small number of tours apparently

cs681fig9-10.cdr Tuesday, March 12, 2024 3:26:47 PM Color profile: Disabled Composite Default screen

So far, an optimal solution can be found after checking all solution possibilities which grow combinatorially with input size, i.e., efficiency depends on listing a combinatorial object.

Another Combinatorial Problem

	Levitin, 3rd		▼			
A solution is not readily obvi- ous: cheaper job to assign to	Cost	Job 1	Job 2	Job 3	Job 4	
Person 2 is Job 3, but cheapest Job 3 is really with Person 3.	Person 1	9	2	7	8	
<u>م</u>	Person 2	6	4	▶3	7	
The point is a minimum sum not individual costs.	Person 3	5	8	1◄	8	
	Person 4	7	6	9	4	
ת ת ת						

$$P_1 P_2 P_3 P_4$$

< 1, 2, 3, 4 >

Quiz What's the cost of the trivial (indicated) job assignment?

Assign jobs to persons such that total cost is minimum

© 2024 Dr. Muhammad Al-Hashimi

The Assignment Problem

Quiz

Identify the combinatorial objects in an exhaustive search solution like KP and TSP? Hint: write another job assignment like in previous slide.

Possible objectives: minimize financial cost or completion time, maximize satisfaction.

Classic formulation (statement)

Persons (agents), n

Sobs (tasks), n

Solution Cost (weight) function + a constraint

Applications

Minimize trip distance or time, fuel cost or consumption.

Maximize utilization, profit, or productivity, or minimize operating cost.

© 2024 Dr. Muhammad Al-Hashimi

Assign aircrafts to trips Equipment to facility, salesman to region...

A Closer Look

Optimization problem

problems tend to be ridiculously simple, in principle.

Ouiz

Suggest an exhaustive search solution to sorting if

Algorithms based on an exhaustive search for such \Rightarrow **Results summary**

How bad? Compare sorting

viewed as a combinatorial problem. Compare to selection sort.

Exercise

Why is the Assignment Problem fundamentally different even though it has a similar structure and can be solved similarly?

Best known efficiency?

 → Assignment vs. the other two
 Known much better efficiency; none ff Co for KP & TSP!

© 2024 Dr. Muhammad Al-Hashimi

Why some optimization problems pose difficulty?

cs681fig9-10.cdr Tuesday, March 12, 2024 3:26:48 PM Color profile: Disabled

Composite Default screen

Why did selection sort, worst-case insertion sort and unique elements have <u>exactly</u> the same number of basic ops?

Quiz Describe a **brute-force** approach for finding the closest pair of points.

-> Problem reduction

Review

Revisit counting questions (quiz)

Expected efficiency (what's in common?)

Conclusion

Measure distance between all unique (why?) pairs in set of points, i.e., counting Q3 ($nCs = ^{1/2}(n-1) \times n$). All algorithms that examine (or enumerate, i.e., a subset or all) distinct pairs of items from a finite set will be at least O(n^2).

A **reduction** involves a <u>function</u> that maps (transforms) an instance of *P* to an instance in *Q* for all instances (i.e., get same result from either).

Id original problem *P* and its question, **reduced problem** *Q* and its <u>equivalent</u> question.

Turning a geometric question to an algebraic one is very common.

© 2024 Dr. Muhammad Al-Hashimi

Transforming the TSP to solve

Major theoretical importance

 $A thinking map TSP as example P \rightarrow Q$

Reduction patterns in algorithms

cs681fig9-10.cdr Tuesday, March 12, 2024 3:26:49 PM Color profile: Disabled Composite Default screen

Legal moves leading to valid positions suggest edges and verts, respectively, in a graph (should it be directed?).

Quiz

What is an <u>equivalent ques-</u> <u>tion</u> in the (reduced) graph problem Q? Suggest a graph algorithm to answer it?

۲

Some problems involve exploring sequences of states representing possible solutions or positions, i.e., searching a **state space** (what if states increase exponentially with input size?).

Exercise

Give examples for reductions to graph problems. **Hint**: not a graph problem but 1st step to solve it is to draw a graph.

© 2024 Dr. Muhammad Al-Hashimi

Problem Reduction Solve A Famous Puzzle

State-space graph

Exercise

Pick an activity trail to pursue & report back

Investigate procedures to generate the required combinatorial objects.

For example, in the KP, perhaps check first if all fit in *O*(*n*), just in case.

Exercise

Programming challenges Solution (opts), impact?

Check at least 2 opts for KP, discuss effects on efficiency. Specify algorithms (write a pseudocode)

© 2024 Dr. Muhammad Al-Hashimi

Read pp. 1-15 Garey & Johnson **Computers and Intractability: A Guide** to the Theory of NP-Completeness