The Knapsack Problem

A knapsack in the real world can be a shipping container, a transport plane, or a warehouse.

Classic formulation (statement)
Fit the most valuable set of items without exceeding knapsack capacity

Knapsack Problem Brute Force Approach

Exhaustive search

Consider all possible item subsets
 Calculate weight for each
 Pick a highest-value subset that fits

Quiz
In the example, how many subsets are there to consider? How do we know in general (for n items)?

Example (later)

$$
\begin{aligned}
& W,\left\{w_{i}\right\},\left\{v_{i}\right\} \\
& W=10 \\
& w=\{3,6,5,2\} \\
& v=\{15,45,35,40\}
\end{aligned}
$$

\Rightarrow Index set

? \Rightarrow Power set
$\underset{\substack{\text { Items from a finite set } \\ \text { may be combined in many }}}{ }\rangle$ Finite sets ways to create interesting objects, which can be expressed as sequences of item indices.

b) 2 generation questions

List set members: permutations

* Group set members: subsets
$\phi\{1\}\{2\}\{3\}\{1,2\}\{1,3\}\{2,3\}\{1,2,3\}$

\because Counting Review

Quiz

Which question answers the quiz about the number of subsets to consider in the example? Tricky, think about it (answer below)

3 great combinatorial questions for any set of \boldsymbol{n} items

(1) How many ways to order?

Count $(1,2)$ as different than $(2,1)$.

Why did selection sort, worst-case insertion sort and unique elements have exactly the same number of basic ops?
(2 How many pairs (ways to pair)?
(3 How many distinct pairs?
"aas 1vu!ıdo
ин,, рә1!! риәцр ар!!s ачł и! z!̣пb ачł моп1од sdiәч рие ачи ’дламоч

KAU • CS-681 4

The Knapsack Problem An Optimal Subset

Exercise

Simulate an algorithm to identify the optimal subset. Hint: go line by line, record latest encountered max (don't look at the whole table).

Quiz

(a) Which counting formula is used to count subsets of size two? (b) What's the general formula for any size (i)? (c) Write a sum for total number of subsets.

Exponential Growth A Visualization

Exponential Run Time Visualization			
Input Size	Basic Op Count	Run Time (s)*	Run Time (Yr)
10	1024	0	0
25	33554432	0	0
50	1,125,899,906,842,620	1	0
75	37778931862957200000000	37778932	1
100	1267650600228230000000000000000	1267650600228230	40,170,303

*Assuming a computer that can sustain 1 petaflops (10^{15} floating-point operations per second), 1 basic op \equiv average-flop

According to plate tectonics theory, 40 million years ago India had not yet collided (fully perhaps) with Asia! https://en.wikipedia.org/wiki/Plate_tectonics

Quiz

What if a top (as of 2020)
100 peta-flop supercomputer was used? Assume linear scaling, which is not realistic.

Ron Blakey, NAU Geology, CCA-by-SA 4.0 License

The Traveling Salesman Problem

Exercise
Specify the formal inputs to the TSP, and give 1-2 instances.

Classic formulation (statement)
Shortest tour through a set of cities visiting each exactly once before returning to the start city

Traveling Salesman Problem Brute Force Approach

Exhaustive search

* Consider all possible tours
* Calculate the length of each tour
\& Pick one with minimum length
cs681fig9-10.cdr
day, March 12, 2024 3:26:43 PM Color profile: Disabled
a -31584
b 3-679
c $16-42$
d $574-3$
e 8923 -

\Rightarrow Hamiltonian circuit

Quiz
What's the length of tour defined by this HC?

The TSP is converted to a
weighted graph problem. Find the 0 ERE

Exercise
Lookup other formulations of (ways to state) the TSP. Discuss at least 2. Share in course group.

Min total weights for shortest tour Largest profit? pick max total weights

Traveling Salesman Problem Hamiltonian Circuits

3 Observations

(2)

Quiz

Check the tour length of abcdea above if it starts at b and write the resulting HC. Any different from TSP view?

Exercise

Write HC starting with b,
compare to figure. (Try a few, match with ones in figure).
$\mathrm{n}+1$ vertices ($\mathrm{n}-1$ distinct)

$1,2,3,4,5,1$	24	$1,5,2,4,3,1$	29
$1,3,2,4,5,1 \times$	25	$1,2,5,4,3,1$	20
$1,4,2,3,5,1$	28	$1,4,5,2,3,1$	24
$1,2,4,3,5,1$	24	$1,5,4,2,3,1$	25
$1,3,4,2,5,1$	29	$1,2,4,5,3,1$	16
$1,4,3,2,5,1$	32	$1,4,2,5,3,1$	24
$1,4,3,5,2,1$	23	$1,3,2,5,4,1$	24
$1,3,4,5,2,1$	20	$1,2,3,5,4,1$	19
$1,5,4,3,2,1$	24	$1,5,3,2,4,1$	28
$1,4,5,3,2,1$	19	$1,3,5,2,4,1$	24
$1,3,5,4,2,1$	16	$1,2,5,3,4,1$	23
$1,5,3,4,2,1$	24	$1,5,2,3,4,1$	32

Exercise

Identify the tour of opposite direction to indicated one. Can we safely exclude it?

(3)

rule?

Traveling Salesman Problem An Optimal Tour

ᄃ) 2-before-3 rule

Essentially, only check distinct tours by eliminating opposite and alternate startverts versions.

Exercise

Write the component distances of indicated tours.

Exercise

Highlight below the optimal HC, show weights.

$1,2,3,4,5,1 \quad ?$
$1,4,2,3,5,1 \quad 28$
$1,2,4,3,5,1 \quad 24$
$1,5,2,4,3,1 \quad 29$
$1,2,5,4,3,1 \quad 20$
$1,4,5,2,3,1 \quad 24$
$1,5,4,2,3,1 \quad 25$

- $1,2,4,5,3,1 \quad 16$
$1,4,2,5,3,1 \quad 24$
$1,2,3,5,4,1 \quad 19$?
$1,2,5,3,4,1 \quad 23$
$1,5,2,3,4,1 \quad 32$

Traveling Salesman Problem Efficiency

\Rightarrow Exhaustive search: counts

A All tours: example, general
Single start-end city
Distinct HC

Exercise
How many tours need to be checked if we double cities to 10 ? How many fold was the increase?
\Rightarrow A warning
Example deceptive, only a small number of tours apparently

Another Combinatorial

Composite Default screen
So far, an optimal solution can be found after checking all solution possibilities which grow combinatorially with input size, i.e., efficiency depends on listing a combinatorial object.

A solution is not readily obvious: cheaper job to assign to Person 2 is Job 3, but cheapest Job 3 is really with Person 3.
(D)

The point is a minimum sum not individual costs.

The Assignment Problem

Quiz

Identify the combinatorial objects in an exhaustive search solution like KP and TSP? Hint: write another job assignment like in previous slide.

Possible objectives: minimize financial cost or completion time, maximize satisfaction.

Classic formulation (statement)

 Persons (agents), n Jobs (tasks), n
Applications

Minimize trip distance or time, fuel cost or consumption.

Maximize utilization, profit, or productivity, or minimize operating cost.

A Assign aircrafts to trips

* Equipment to facility, salesman to region...

Ouiz
Suggest an exhaustive search solution to sorting if viewed as a combinatorial problem. Compare to selection sort.

Exercise
Why is the Assignment Problem fundamentally different even though it has a similar structure and can be solved similarly?
\Rightarrow How bad? Compare sorting Best known efficiency? ${ }^{\text {© }}$

\Rightarrow Assignment vs. the other two Known much better efficiency; none for KP \& TSP!

Quiz
Describe a brute-force approach for finding the closest pair of points.

Revisit counting questions (quiz)

Expected efficiency (what's in common?)

Conclusion
forms) an instance of \boldsymbol{P} to an instance in Q for all instances (i.e., get same result from either).

Id original problem P and its question, reduced problem Q and its equivalent question.

Turning a geometric question to an algebraic one is very common.

A thinking map TSP as example ${ }^{P \rightarrow Q}$
Reduction patterns in algorithms

Major theoretical importance

Legal moves leading to valid positions suggest edges and verts, respectively, in a graph (should it be directed?).

Quiz

What is an equivalent question in the (reduced) graph problem Q? Suggest a graph algorithm to answer it?

(0)

Some problems involve exploring sequences of states representing possible solutions or positions, i.e., searching a state space (what if states increase exponentially with input size?).

Exercise ${ }^{(4)}$

Give examples for reductions to graph problems. Hint: not a graph problem but 1st step to solve it is to draw a graph.

Pick an activity trail to pursue \& report back

- Ex Exhaustive search KP \& TSP

Investigate procedures to generate the required combinatorial objects.

For example, in the KP, perhaps check first if all fit in $O(n)$, just in case.
Exercise
Check at least 2 opts for KP, discuss effects on efficiency.

Programming challenges
Optimizations (opts), impact?
Specify algorithms (write a pseudocode)

© 2024 Dr. Muhammad Al-Hashimi

Read pp. 1-15 Garey \& Johnson Computers and Intractability: A Guide to the Theory of NP-Completeness

