## The Exercise

In the InsertionSort, write a recurrence relating $C(n)$ with the immediately following instance, then solve. Hint: Write the sequence of instances generated by the outer loop and note sizes.

Only a simple procedure to insert a key in a sorted list is needed to relate instances $\boldsymbol{n}, \boldsymbol{n - 1}$ (diagram).
If lucky, complete sorting after just $O(n)$ key-comps (when?)

## Quiz

How many key-comps are needed in the insertion round when sorting input size is $n$ ? the $f(n)$ in a recurrence (tricky, think about it)

Generally will have to process the $\boldsymbol{n} \mathbf{- 1}$ sublist first.

## Quiz

What's the name of the returning phase of recursion?

## Insert last element in remaining $n-1$ (hopefully) sorted sublist, repeat



## Classic bottom-up

## Exercise

Use the pattern diagram to write a summation for the worst-case $C(n)$. Hint: write the max \#key-comps next to each iteration (the first one is $\mathbf{1}$ for a sorting size $\boldsymbol{n}=2$ ).

## 8

## Exercise

Write a pseudocode for a recursive insertion sort and code it to test. Print list after each insertion round.

Quiz
Determine the recurrence from the pseudocode.


## Review

The count $C(n)$ of a suitable basic operation, as a function of input size $n$, can be used as a basis of the sequence.

## 8

Particularly, conceiving or visualizing how iterated steps are related.

## Efficiency described (modeled) by a math sequence of terms based on input sizes.

Q Conceptualizing steps helps write either the generic term or a recurrence that relates the terms

Non-recursive steps conducive for a generic term, recursive ones favor a recurrence Articulating steps, a pseudocode, can help directly infer a generic term or a recurrence

Algorithm Factorial
Input Integer $n \geq 0$

Algorithm Factorial (n, val)
1: if $n=0$ then 2: return val
3: val $\leftarrow v a l \times n$
4: return Factorial ( $n-1$, val)
fact $\leftarrow 1$
for $i \leftarrow 1$ to $n$ do
$f a c t \leftarrow f a c t \times i$
return fact


## $\sum_{1}^{n} 1$ 1

$$
C(n)=C(n-1)+1,
$$

$$
C(0)=0 \quad f(n)
$$

## Sequence of Instances Insertion Sort

## Exercise

Write the generic term of the efficiency sequence.

## Algorithm Insertion Sort

Input Array of $n$ orderbale keys $A[0 . . n-1]$
Output Sorted array

$$
k \leftarrow A[i]
$$

$$
j \leftarrow i-1
$$

$$
\text { while } j \geq 0 \text { and } A[j]>k \text { do }
$$

$$
A[j+1] \leftarrow A[j]
$$

$$
j \leftarrow j-1
$$

$$
A[j+1] \leftarrow k
$$

```
call \(\operatorname{ins}(A, n-1)\)
procedure ins \((A, i)\)
1: if \(i>1\) then
2: \(\quad \operatorname{ins}(A, i-1)\)
3: \(k \leftarrow A[i] \quad f(n)\)
4: \(j \leftarrow i-1\)
5: while \(j \geq 0\) and \(A[j]>k\) do
\(A[j+1] \leftarrow A[j]\)
\(j \leftarrow j-1\)
8: \(A[j+1] \leftarrow k\)
```

Pseudocode indicates possible early exit in the while-loop; in the worst-case, loops run to the end.
$\sum_{i=1}^{n-1} \sum_{j=0}^{i-1} 1$


$$
i=1 j=0
$$

$$
\begin{gathered}
x(n)=x(n-1)+(n-1), \\
x(2)=1 \quad f(n) \\
x(1)=0
\end{gathered}
$$

## Quiz

What is the total and per instance number of key comparisons for the example instance? Compare to the worst case?

89,45, 68, 90, 29, 34, 17
$45,89,68,90,29,34,17$ $45,68,89,90,29,34,17$ $45,68,89,90,29,34,17$ $29,45,68,89,90,34,17$ $29,34,45,68,89,90,17$

## Algorithm Insertion Sort

    \(k \leftarrow A[i]\)
    $j \leftarrow i-1$
while $j \geq 0$ and $A[j]>k$ do
$A[j+1] \leftarrow A[j]$
$j \leftarrow j-1$
$A[j+1] \leftarrow k$
$45,68,89,90,29,34,17$
$45,89,68,90,29,34,17$
$89,45,68,90,29,34,17$

| $n$ | 2 <br> $C_{\text {worst }}(n)$ <br> 1 | $\left.\begin{array}{\|c}\square\end{array}\right]$ |
| :---: | :---: | :---: |



10
call $\operatorname{ins}(A, n-1)$
procedure $\operatorname{ins}(A, i)$
1: if $i>1$ then
2: $\quad \operatorname{ins}(A, i-1)$
3: $k \leftarrow A[i]$
4: $j \leftarrow i-1$
5: while $j \geq 0$ and $A[j]>k$ do
$A[j+1] \leftarrow A[j]$
$j \leftarrow j-1$
8: $A[j+1] \leftarrow k$

## Exercise

Determine the best-case efficiency. Describe instances that result in best or worst case efficiency.

$$
\begin{aligned}
& C_{\mathrm{worst}}(n) \in \Theta\left(n^{2}\right) \\
& C(n) \in O\left(n^{2}\right)
\end{aligned}
$$

Exercise
Write summations and/or recurrences. Characterize the efficiency? Describe instances that result in different efficiency types, if any.

Algorithm BinarySearch
Input $A[0 . . n-1]$ sorted in ascending order
Input Search key $K$
Output Index of key in $A$ if found, -1 otherwise


## Quiz

Compare instance size reduction/change pattern in insertion sort and binary search.

## Exercise

Suggest example algorithms for each case
 round, compare to figures.

## Sequence of Instances A General View

## Input size change

## Greedy decision

cs681fig5-8.cdr
Cs681fig5-8.cdr
Monday, February 26, 2024 12:22:13 PM Color profile: Disabled

Composite Default screen

## Another Useful Math Tool Using Limits

 A math limit can investigate relative growth behavior as $n \rightarrow \infty$.don't care about small $n$

## Efficiency class of $\boldsymbol{t}(\boldsymbol{n})$ ?

$$
\lim _{n \rightarrow \infty} \frac{t(n)}{g(n)}=\left\{\begin{array}{l}
0 \\
c>0 \\
\infty
\end{array}\right.
$$

8
Who goes faster to $\infty$ ? It must eventually (asymptotically) be above.

## Exercise

Use Excel to compare growth of functions from exercise Slide 1-11. For example: the truth of $\boldsymbol{n}^{3} \in \Omega\left(\boldsymbol{n}^{2}\right)$.


| $\downarrow$ | 1 | 5.25 | 1.00 | 5.25000 |
| :---: | :---: | :---: | :---: | :---: |
|  | 2 | 6.00 | 4.00 | 1.50000 |
|  | 3 | 7.25 | 9.00 | 0.80556 |
|  | 4 | 9.00 | 16.00 | 0.56250 |
|  | 5 | 11.25 | 25.00 | 0.45000 |
|  | 6 | 14.00 | 36.00 | 0.38889 |
|  | 7 | 17.25 | 49.00 | 0.35204 |
|  | 8 | 21.00 | 64.00 | 0.32813 |
| ... |  |  | (D) |  |
| 97 |  | 2357.25 | 9409.00 | 0.25053 |
| 98 |  | 2406.00 | 9604.00 | 0.25052 |
| 99 |  | 2455.25 | 9801.00 | 0.25051 |
| 100 |  | 2505.00 | 10000.00 | 0.25050 |
| ... |  |  |  |  |
| 447 |  | 49957.25 | 199809.00 | 0.25003 |
| 448 |  | 50181.00 | 200704.00 | 0.25002 |
| 449 |  | 50405.25 | 201601.00 | 0.25002 |
| 1000 |  | 250005.00 | 1000000.00 | 0.25001 |
| . $\cdot$ |  |  |  |  |

## Algorithm $\equiv$ steps to result

* Ordered
* Unambiguous
* Computable
* Terminating


# Review <br> Proper Pseudocode 

An arbitrary mix of natural language, math, and programming-like expressions.

Pseudocode should not lead to wrong results due to mis-statement.

Input specs typically essential in how steps are stated.

(3)<br>Components of statement

A search may return true/false (or 0/1) or an index in an array, or a pointer in a linked list or the found item itself.

User must be able to unambiguously follow intended steps even if the algorithm is flawed.

## b) Statement vs. correctness

## 4) Specify legal input instances

${ }^{\circ}$ Inputs, in terms of parameters used in steps, limitations or preconditions
(3
$\Rightarrow$ Specify expected results
${ }^{\circ}$ Output items or effects, specs (how) if needed
s) Elucidate structure to clarify logic Iterations, conditionals, indent to show nesting

Algorithm InsertionSort
Input Array $A[0 . . n-1]$ of orderbale keys
Output Sorted array

$$
\begin{aligned}
& \text { for } i \leftarrow 1 \text { to } n-1 \text { do } \\
& \quad v \leftarrow A[i] \\
& j \leftarrow i-1 \\
& \text { while } j \geq 0 \text { and } A[j]>v \text { do } \\
& \quad A[j+1] \leftarrow A[j] \\
& \quad j \leftarrow j-1 \\
& A[j+1] \leftarrow v
\end{aligned}
$$

```
Algorithm 1 Insertion Sort (Levitan, 3rd)
Input Array of \(n\) orderbale keys \(A[0 . . n-1]\)
Output Sorted array
    for \(i \leftarrow 1\) to \(n-1\) do
        \(k \leftarrow A[i]\)
        \(j \leftarrow i-1\)
        while \(j \geq 0\) and \(A[j]>k\) do
            \(A[j+1] \leftarrow A[j]\)
            \(j \leftarrow j-1\)
        \(A[j+1] \leftarrow k\)
```

```
Algorithm 3 Insertion Sort (Recursive)
Input Array of \(n\) orderbale keys \(A[0 . . n-1]\)
Output Sorted array
call \(\operatorname{ins}(A, n-1)\)
procedure \(\operatorname{ins}(A, i) \quad \triangleright i\) insert index
    if \(i>1\) then
    \(\operatorname{ins}(A, i-1)\)
    \(k \leftarrow A[i]\)
    \(j \leftarrow i-1\)
    while \(j \geq 0\) and \(A[j]>k\) do
        \(A[j+1] \leftarrow A[j]\)
        \(j \leftarrow j-1\)
    \(A[j+1] \leftarrow k\)
```


## Algorithm Mergesort

Input ... $A[0 \ldots n-1] \ldots$

Exercise
Trace in your mind lists of 2 and 3 keys (check element indices of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ ).

* Divide problem into smaller instances

Q Apply solution independently to smaller instances

* Construct problem solution from solutions to smaller instances

Output...

## 1: if $n>1$ then

2: copy $A[0 . .\lfloor n / 2\rfloor-1]$ to $B[0 . .\lfloor n / 2\rfloor-1]$
3: copy $A[\lfloor n / 2\rfloor . . n-1]$ to $C[0 . .\lfloor n / 2\rfloor-1]$
4: $\quad \operatorname{Mergesort}(B[0 . .\lfloor n / 2\rfloor-1])$
5: $\quad \operatorname{Mergesort}(C[0 . .\lfloor n / 2\rfloor-1])$
6: $\quad \operatorname{Merge}(B, C, A)$

## Exercise

List calls in steps 4-6, show input arrays for each (i.e, serialize figure), note list reduction sequence. Hint: print an operation log to study (note recursive call to $\mathrm{n}<2$ instance triggers backtracking phase).

To visualize backtracking, fold figure along the dotted line to overlay the green box \#6 on the magenta box \#3.

## Quiz

How many extra array elements were allocated by mergesort during the expansion phase of the recursion? What if $\mathrm{n}=16$ ?

## Algorithm Mergesort

1: if $n>1$ then
2: copy $A[0 . .\lfloor n / 2\rfloor-1]$ to $B[0$.. $\lfloor n / 2$
3: copy $A[\lfloor n / 2\rfloor . . n-1]$ to $C[0 . .\lfloor n / 2$
4: $\operatorname{Mergesort}(B[0 . .\lfloor n / 2\rfloor-1])$
5: $\quad \operatorname{Mergesort}(C[0 . .\lfloor n / 2\rfloor-1])$
6: $\quad \operatorname{Merge}(B, C, A)$

## Backtracking phase

## Levitan, 3rd



# Mergesort Practice 



## Algorithm Mergesort

1: if $n>1$ then
2: copy $A[0$.. $\lfloor n / 2\rfloor-1]$ to $B[0$.. $\lfloor n / 2\rfloor-1]$
3: copy $A[\lfloor n / 2\rfloor . . n-1]$ to $C[0 . .\lfloor n / 2\rfloor-1]$
4: $\operatorname{Mergesort}(B[0 . .\lfloor n / 2\rfloor-1])$
5: $\quad$ Mergesort $(C[0 . .\lfloor n / 2\rfloor-1])$
6: $\quad \operatorname{Merge}(B, C, A)$


