Composite Default screen

Only a simple procedure to

If lucky, complete sorting after just O(n) key-comps

How many key-comps are needed in the insertion round when sorting input

size is n? the f(n) in a recurrence (tricky, think about it)

Generally will have to process

n, n-1 (diagram).

(when?)

Ouiz

Quiz

8-

Recursive Algorithms Exercise Hints

The Exercise In the InsertionSort, write a recurrence relating C(n) with the immediately following instance, then solve. Hint: Write the sequence of instances generated by the outer loop and note sizes.

insert a key in a sorted list is needed to relate instances **Strategy**

Insert last element in remaining n-1(hopefully) sorted sublist, repeat

What's the name of the returning phase of recursion?

© 2024 Dr. Muhammad Al-Hashimi

the *n*–1 sublist first.

f(n)

cs681fig5-8.cdr Monday, February 26, 2024 12:21:59 PM Color profile: Disabled Composite Default screen

8-

Recursive Algorithms Insertion Sort Exercise

The count C(n) of a suitable basic operation, as a function of input size n, can be used as a basis of the sequence.

8

Particularly, conceiving or visualizing how iterated steps are related.

the terms

Solving the recurrence gives the generic term of the sequence.

Efficiency described (modeled) by a math sequence of terms based on input sizes.

- Conceptualizing steps helps write either the generic term or a recurrence that relates
- Non-recursive steps conducive for a generic term, recursive ones favor a recurrence
- Articulating steps, a pseudocode, can help directly infer a generic term or a recurrence

KAU • CS-681 3

Review

Sequence of Instances

Basic operation

Algorithm Factorial Input Integer $n \ge 0$ Output n!

cs681fig5-8.cdr Monday, February 26, 2024 12:22:09 PM Color profile: Disabled Composite Default screen

Sequence of Instances Insertion Sort

Exercise Write the **generic term** of the efficiency sequence. **Algorithm** Insertion Sort **Input** Array of *n* orderbale keys A[0..n-1]**Output** Sorted array

© 2024 Dr. Muhammad Al-Hashimi

cs681fig5-8.cdr Monday, February 26, 2024 12:22:11 PM Color profile: Disabled Composite Default screen

What is the total and per

instance number of key compar-

isons for the example instance?

Compare to the worst case?

Quiz

Insertion Sort Efficiency

Algorithm Insertion Sort

89,45,68,90,29,34,17

45,89,68,90,29,34,17

45,68,89,90,29,34,17

45,68,89,90,29,34,17

29,45,68,89,90,34,17

29,34,45,68,89,90,17

cs681fig5-8.cdr Monday, February 26, 2024 12:22:11 PM Color profile: Disabled Composite Default screen

Sequence of Instances Exercise

Exercise Write summations and/or recurrences. Characterize the efficiency? Describe instances that result in different efficiency types, if any. Algorithm BinarySearch Input A[0..n-1] sorted in ascending order Input Search key KOutput Index of key in A if found, -1 otherwise

Sequence of Instances A General View

© 2024 Dr. Muhammad Al-Hashimi

Composite Default screen

Project 1 Discussion

© 2024 Dr. Muhammad Al-Hashimi

cs681fig5-8.cdr Monday, February 26, 2024 12:22:13 PM Color profile: Disabled Composite Default screen

Another Useful Math Tool Hsing **I**imits

A math limit can investigate relative growth behavior as $n \rightarrow \infty$.

Who goes faster to ∞ ? It must eventually (asymptotically)

Use Excel to compare growth of functions from exercise Slide 1-11. For example: the

limit can investigate growth behavior as	don't care about small n n	$\frac{?}{\frac{t(n)}{\frac{1}{4}n^2+5}}$	$\frac{g(n)}{n^2}$	$\lim_{n \to \infty} \frac{t(n)}{g(n)}$
Efficiency class	of $t(n)$?	5.25	1.00	5.25000
$\lim_{n \to \infty} \frac{t(n)}{g(n)} = \begin{cases} 0 \\ c > 0 \\ \infty \end{cases}$	2	6.00	4.00	1.50000
	3	7.25	9.00	0.80556
	4	9.00	16.00	0.56250
	5	11.25	25.00	0.45000
	6	14.00	36.00	0.38889
	-7	17.25	49.00	0.35204
		21.00	64.00	0.32813
	97	2357.25	9409.00	0.25053
	98	2406.00	9604.00	0.25052
	99	2455.25	9801.00	0.25051
es faster to ∞? It must	100	2505.00	10000.00	0.250 50
2.	•••	10057.25	100200.00	0.25007
	447	49907.20	199809.00	0.25005
el to compare growth	448	50181.00	200704.00	0.25002
tions from exercise	449	50405.25	201601.00	0.25002
11. For example: the	1000	250005.00	100000.00	0.25001
$n^3 \in \Omega(n^2)$.	•••			

© 2024 Dr. Muhammad Al-Hashimi

truth of $n^3 \in \Omega(n^2)$.

8

be above. Exercise

cs681fig5-8.cdr Monday, February 26, 2024 12:22:14 PM Color profile: Disabled Composite Default screen

Algorithm = steps to result

- Ordered
- Unambiguous
- Computable
- Terminating

Pseudocode should not lead to wrong results due to mis-statement.

Input specs typically essential in how steps are stated.

Components of statement

A search may return true/false (or 0/1) or an index in an array, or a pointer in a linked list or the found item itself.

User must be able to unambiguously follow intended steps even if the algorithm is flawed.

© 2024 Dr. Muhammad Al-Hashimi

Review Proper Pseudocode

An arbitrary mix of natural language, math, and programming-like expressions.

Statement vs. correctness

⇒ Specify legal input instances

Inputs, in terms of parameters used in steps, limitations or preconditions

Specify expected results

Output items or effects, specs (how) if needed

Elucidate structure to clarify logic
Iterations, conditionals, indent to show nesting

Review - Pseudocode © Examples

Algorithm InsertionSort
Input Array $A[0n-1]$ of orderbale keys
Output Sorted array

Surput Sorred array	1. for $i \leftarrow 1$ to $n-1$ do
1: for $i \leftarrow 1$ to $n-1$ do	2: $v \leftarrow A[i]$
2: $v \leftarrow A[i]$	3: $i \leftarrow i - 1$
3: $j \leftarrow i - 1$	4: while $j \ge 0$ and $A[j] > v$ do
4: while $j \ge 0$ and $A[j] > v$ do	5: $A[j+1] \leftarrow A[j]$
5: $A[j+1] \leftarrow A[j]$	6: $j \leftarrow j - 1$
6: $j \leftarrow j - 1$	7: end while
7: $A[j+1] \leftarrow v$	8: $A[j+1] \leftarrow v$
	9: end for

Algorithm InsertionSortRec Input Array A[0..n-1] of orderbale keys Input Insert index *i*, initially n-1Output Sorted array 1: if i > 1 then 2: InsertionSortRec (A, i-1)3: $v \leftarrow A[i]$ 4: $j \leftarrow i-1$ 5: while $j \ge 0$ and A[j] > v do 6: $A[j+1] \leftarrow A[j]$ 7: $j \leftarrow j-1$ 8: $A[j+1] \leftarrow v$

© 2024 Dr. Muhammad Al-Hashimi

Algorithm 1 Insertion Sort (Levitan, 3rd) **Input** Array of *n* orderbale keys A[0..n-1]Output Sorted array 1: for $i \leftarrow 1$ to n-1 do $k \leftarrow A[i]$ 2: $j \leftarrow i - 1$ 3: while $j \ge 0$ and A[j] > k do 4: 5: $A[j+1] \leftarrow A[j]$ $j \leftarrow j - 1$ 6: $A[j+1] \leftarrow k$ 7:

 Algorithm 3 Insertion Sort (Recursive)

 Input Array of n orderbale keys A[0..n−1]

 Output Sorted array

 ► call ins(A, n−1)

procedure ins(A, i) 1: **if** i > 1 **then** 2: ins(A, i - 1)3: $k \leftarrow A[i]$ 4: $j \leftarrow i - 1$ 5: **while** $j \ge 0$ and A[j] > k do 6: $A[j + 1] \leftarrow A[j]$ 7: $j \leftarrow j - 1$

8: $A[j+1] \leftarrow k$

cs681fig5-8.cdr Monday, February 26, 2024 12:22:15 PM Color profile: Disabled Composite Default screen

Mergesort

Exercise Trace in your mind lists of 2 and 3 keys (check element indices of A,B,C).

- Divide problem into smaller instances
- Apply solution independently to smaller instances
- Construct problem solution from solutions to smaller instances

```
Algorithm Mergesort
Input ... A[0 ... n-1] ...
Output ...
```

- 1: **if** *n* > 1 **then**
- 2: copy $A[0 ... \lfloor n/2 \rfloor 1]$ to $B[0 ... \lfloor n/2 \rfloor 1]$
- 3: copy $A[\lfloor n/2 \rfloor .. n-1]$ to $C[0 .. \lfloor n/2 \rfloor -1]$
- 4: $Mergesort(B[0 .. \lfloor n/2 \rfloor 1])$
- 5: *Mergesort*($C[0 .. \lfloor n/2 \rfloor 1]$)
 - Merge(B, C, A)

6:

© 2024 Dr. Muhammad Al-Hashimi

cs681fig5-8.cdr Monday, February 26, 2024 12:22:18 PM Color profile: Disabled Composite Default screen

Exercise

List calls in steps 4-6, show input arrays for each (i.e, serialize figure), note list reduction sequence. Hint: print an operation log to study (note recursive call to n<2 instance triggers backtracking phase).

To visualize backtracking, fold figure along the dotted line to overlay the green box #6 on the magenta box #3.

Quiz

How many extra array elements were allocated by mergesort during the expansion phase of the recursion? What if n=16?

© 2024 Dr. Muhammad Al-Hashimi

Algorithm Mergesort

1: **if** *n* > 1 **then**

- copy $A[0 ... \lfloor n/2 \rfloor 1]$ to $B[0 ... \lfloor n/2 \rfloor$ 2:
- copy $A[\lfloor n/2 \rfloor ... n-1]$ to $C[0 ... \lfloor n/2]$ 3:
- $Mergesort(B[0 .. \lfloor n/2 \rfloor 1])$ 4:
- $Mergesort(C[0 .. \lfloor n/2 \rfloor 1])$ 5:
- Merge(B, C, A)6:

2 . 9

29

12345789

8 3

38

2389

?00

6

2

Levitan, 3rd

KAU • CS-681 14

Mergesort Example

54

5

45

Backtracking phase

?

17

1457

7

Mergesort Practice

© 2024 Dr. Muhammad Al-Hashimi

1