${ }^{2}$ Efficiency as a sequence?

Exercise
Write the basic operation count $C(n)$ for $n=0,1,2$, $3,4,5$ as terms of a math sequence.

Algorithm Factorial
Input Integer $n \geq 0$
Output n !
1: fact $\leftarrow 1$
2: for $i \leftarrow 1$ to n do
3: \quad fact \leftarrow fact $\times i$
4: return fact

n			
$C(n)$			

Another Useful Tool

\Rightarrow Mathematical sequence
 \Rightarrow Generic (nth) term

Examples

3 ways to do the same thing; each leads to the other two, but maybe more convenient or helpful in some cases.
seems off somehow! Write some terms. How to correct it?

Exercise
Use the recurrence to find the 8th term (position 7) of the sequence. Verify from the generic term.

$>$ Explicit sequence

 $\begin{array}{lllllll}0 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

Generic term $\boldsymbol{x}(6)=$?

$$
x(n)=n(n+1) / 2, \quad n \geq 1
$$

\Rightarrow Recurrence $\boldsymbol{x}(6), \boldsymbol{x}(7)=$?

$$
x(n)=x(n-1)+n \text { for } n>0, x(0)=0
$$

\Rightarrow General solution
\Rightarrow Particular solution

 sive algorithms.

$$
\begin{gathered}
x(n)=x(n-1)+n \text { for } n>0 \\
x(0)=0 \\
x(n)=x(n / 2)+n \text { for } n>1 \\
x(1)=1
\end{gathered}
$$

(1)

slide) specifies a different (particular) sequence.
$0136101521 \ldots$
$136101521 \ldots$

Standard Recurrences

Quiz

Identify the terms related to the generic term in each recurrence (no math, use words).

\Rightarrow Decrease-by-one

$$
T(n)=T(n-1)+f(n)_{\triangle}^{2}
$$

\Rightarrow Decrease-by-constant factor

$$
T(n)=T(n / b)+f(n) \quad b>1, n=b^{k}, k=0,1,2, \cdots
$$

$$
T(n)=a T(n / b)+f(n) \quad a \geq 1, b \geq 2
$$

$$
x(n)=x(n-1)+n \text { for } n>0
$$

Standard Recurrences Master Theorem

Not quite the general form (note condition on f).

No need to solve, sometimes

$$
\text { If } \begin{gathered}
f(n) \in \Theta\left(n^{d}\right) \text { with } d \geq 0 \text { in recurrence } \\
T(n)=a T(n / b)+f(n), a \geq 1, b>1
\end{gathered}
$$

Quiz
Use theorem to determine order of growth for $a=b=2$ and $d=1$. Write the divideconquer recurrence.

$$
T(n) \in \begin{cases}\Theta\left(n^{d}\right) & \text { if } a<b^{d} \\ \Theta\left(n^{d} \log n\right) & \text { if } a=b^{d} \\ \Theta\left(n^{\log _{b} a}\right) & \text { if } a>b^{d}\end{cases}
$$

Solving A Recurrence

Quiz
What is the rationale (basis or reasoning) behind this approach? Hint: not lazy!
\Rightarrow Recognize recurrence?
Lookup solution or growth results first
ᄃ Strategy to solve?
olframAlpha
\& Use Maple? or Wolfram MathWorld * Backward substitutions (standard methoo)
\Rightarrow Examples
(1) \Rightarrow Proof by induction

ᄃ Optional bonus

Efficiency can be determined from the order of growth of the dominant term of a count $C(n)$ of a basic operation as a function of input size n, which should match the order of growth of run time on any machine.

Recurrence relations are used in

 analysis of recursive algorithms Sometimes useful to view algorithm efficiency as a math sequence of terms with input size as position in sequence* A family of sequences can be described by a recurrence (+ init condition to specify a particular one)

Solving a recurrence involves finding the generic term of its underlying sequence.

Review

Analysis of Algorithms General Plan Review

(1) Select suitable input size parameter n
(2) Identify a suitable basic operation
(3 Check basic operation count dependancy
(4) Setup a sum or a recurrence for $C(n)$
© Determine order of growth of $C(n)$ (may need to solve sum or recurrence)

Quiz

Suggest another suitable input size parameter beside the magnitude of n ?

Exercise

Discuss possible basic operation choices, why would the multiplication be preferred?

> Algorithm Factorial
> Input Integer $n \geq 0$
> Output n !

1: if $n=0$ then
2: return 1
3: else return Factorial $(n-1) \times n$?

Algorithm Factorial

Input Integer $n \geq 0$
Output n !
1: fact $\leftarrow 1$
2: for $i \leftarrow 1$ to n do
$f a c t \leftarrow f a c t \times i$
return fact

A tail recursion involving one recursive call to a smaller instance is often easy to specify.

Exercise

Compare to the definition-based recursive version.

Design clues
A simple recursive plan

Algorithm Factorial (n, val)
1: if $n=0$ then
2: return val $\rightarrow f(n)$
3: val \leftarrow val $\times n$
4: return Factorial ($n-1$, val)

Classic top-down

Exercise

Write the sequence of lengths of searched lists in each iteration (code and generate the log below).

$$
\begin{aligned}
& ?[0 \text { ?], } m=?(?) \\
& 6[05], m=2(27) \\
& 3[35], m=4(39) \\
& 1[55], m=5
\end{aligned}
$$

3-way key-comp counts once regardless of its run time cost (why?)

Algorithm BinarySearch
Input $A[0 . . n-1]$ sorted in ascending order
Input Search key K
Output Index of key in A if found, -1 otherwise

$$
\begin{aligned}
& \text { 1: } l \leftarrow 0, r \leftarrow n-1 \\
& \text { 2: } \quad \text { while } l \leq r \text { do } \\
& \text { 3: } \quad m \leftarrow\left\lfloor\frac{l+r}{2}\right\rfloor
\end{aligned} \text { (()) } \begin{cases}\text { 4: } & \text { if } K=A[m] \text { then return } \mathrm{m} \\
\text { 5: } & \text { else if } K<A[m] \text { then } r \leftarrow m-1 \\
\text { 6: } & \text { else } l \leftarrow m+1 \\
\text { 7: } & \text { return }-1\end{cases}
$$

4
\triangleleft Operation review
\Rightarrow Efficiency?
$K<A[m]$

: return -

Quiz
Determine the relationship between an instance \boldsymbol{n} and the immediately following one(s) in the iteration.

Check dependency on instances. Determine the efficiency case (always, worst, or best).
stand form next slide.

Algorithm BinarySearchRec
Input Subrange [l..r] of $A[0 . . n-1]$ sorted ascending
Input Search key K
Output Index of key in A if found, -1 otherwise
1: if $l>r$ then
2: return -1
3: $m \leftarrow\left\lfloor\frac{l+r}{2}\right\rfloor$
$f(n)=?$
4: if $K=A[m]$ then
5: return m
6: else if $K<A[m]$ then
7: $\quad r \leftarrow m-1$
8: else
9: $\quad l \leftarrow m+1$
10: return BinarySearchRec (A, l, r, K)

```
\(l \leftarrow 0, r \leftarrow n-1\)
while \(l \leq r\) do
    \(m \leftarrow\left\lfloor\frac{l+r}{2}\right\rfloor\)
    if \(K=A[m]\) then
        return m
        else if \(K<A[m]\) then
        \(r \leftarrow m-1\)
    else
        \(l \leftarrow m+1\)
return -1
? [0 ?], \(m=\) ? (?)
6 [0 5] , m = 2 (27)
3 [35], m = 4 (39)
1 [55], \(m=5\)
```


Standard Recurrences

Solutions
$\begin{aligned} & \text { Exercise } \\ & \text { Lookup the solution for the }\end{aligned}>$ Decrease-by-one standard form.

$$
T(n)=T(n-1)+f(n)
$$

\Rightarrow Decrease-by-constant factor

$$
\begin{array}{cc}
T(n)=T(1)+\sum_{i=1}^{k} f\left(2^{i}\right) & T(n)=T(n / b)+f(n) \\
T(n)=T(1)+\sum_{i=1}^{k} 1 & b>1, n=b^{k}, k=0,1,2, \cdots
\end{array}
$$

$$
T(n)=T(1)+\sum_{i=1}^{k} f\left(b^{i}\right)
$$

\Rightarrow General divide-conquer

$$
T(n)=a T(n / b)+f(n) \quad a \geq 1, b \geq 2
$$

(0)

In the Mergesort, all we know about step 6 is that it depends on n as shown.

Exercise

In the InsertionSort, write a recurrence relating $C(n)$ with the immediately following instance, then solve. Hint: Write the sequence of instances generated by the outer loop and note sizes.

Algorithm Mergesort

Input ... $A[0 . . n-1] \ldots$
1: if $n>1$ then
2: copy $A[0$.. $\lfloor n / 2\rfloor-1]$ to $B[0 . .\lfloor n / 2\rfloor-1]$
3: \quad copy $A[\lfloor n / 2\rfloor . . n-1]$ to $C[0 . .\lfloor n / 2\rfloor-1]$
$\operatorname{Mergesort}(B[0 . .\lfloor n / 2\rfloor-1])$
Mergesort($C[0$.. $\lfloor n / 2\rfloor-1])$
$\operatorname{Merge}(B, C, A)$

?

Algorithm InsertionSort
Input ... $A[0 . . n-1] \ldots$
Output
for $i \leftarrow 1$ to $n-1$ do
$v \leftarrow A[i]$
$j \leftarrow i-1$
while $j \geq 0$ and $A[j]>v$ do $A[j+1] \leftarrow A[j]$ $j \leftarrow j-1$
$A[j+1] \leftarrow v$

c) Write a recurrence \Rightarrow Determine efficiency

