NP-Complete Problems Practical Implications

\triangleleft Karp reducibility

Recall, theory relies on decision versions of such problems.

Exercise

Describe a polynomial funcdion to reduce all-pair counts of kedge paths in graph to problem of matrix multiplications, determine efficiency.

\Rightarrow 2-Step proof (Karp 21)

 \Rightarrow Solving one is enough Important to recognizestep 2:
polynom reduction
step 1:
in NP

Choices grow combinatorially, must search through an exponentially increasing space.

\Rightarrow Combinatorial explosion

\Rightarrow Interesting instances?
Branch-and-bound can cut search drastically for some instances (unpredictable)

NP-Complete Problems Dealing with Difficulty
 \Rightarrow Search/state space

Build on promising ones, cut short otherwise.

Evaluate partially constructed solutions

When any solution is feasible (e.g., HC in TSP), a path may turn unpromising late, requiring a backtrack to look for the optimal one.
 tive search the search space is made up of fully formed solutions).
\Rightarrow Compare methods (tentative, more later)

\{1\}	12	4
\{2\}	2	2
\{3\}	1	1
\{4\}	4	10
\{5\}	2	2
\{1,2\}	14	6
\{1,3\}	13	5
(4) $\{1,4\}$	16	14
$\times\{1,2,4\}$	18	16
$\times \times 1,3,4\}$	17	-
$\times\{1,4,5\}$	18	-
$\times\{\mathbf{1 , 2 , 3 , 4}\}$	19	-
$\times\{1,2,4,5\}$	20	-
$\times\{1,3,4,5\}$	19	-
${ }^{\times}\{1,2,3,4,5\}$	21	-

Clearly, once $\{1,4\}$ is encountered, any subset containing 1,4 is not worth looking into.

Review Knapsack Problem

 \Rightarrow Exhaustive search

Classic formulation (statement)

 Fit the most valuable set of items without exceeding knapsack capacity
Knapsack Problem An Upper Bound

\Rightarrow Bounding function

\(\begin{array}{llc}4 \& \$ 40 \& 10
7 \& \$ 42 \& 6\end{array}\) B
$\$ 25 \quad 5$
$\$ 124$
\(10 \cdot\left\{\begin{array}{cc}24,4,3
3 \& 1
4\end{array}, 5\right\} \quad\) Examiple
$\{\$ 42, \$ 12, \$ 40, \$ 25\}$
\section*{Quiz}
Describe (in words) the multiplicative ratio v / w in the bounding function. Interpret the term $W-w$. Ans. this slide.
\section*{Exercise}
Write the expression for the initial upper bound.
\Rightarrow State node
\& A partial solution \& Initially, sack empty

Knapsack Problem Next Level

Try next highest per-unit value

A naturally binary decision to add or not item $i=1$.

Quiz
Why pick the bigger num-
ber?

In remaining capacity, after weight 4 is fit (whose value was 40), pick next item.

Knapsack Problem A Search Tree

\triangleleft Feasible solution

Nodes reflect components of a partial solution, transitions choices leading to another one.

(0)

Not feasible, i.e., exceeded capacity (10).

Red cards mark feasible solutions (criteria for a candidate solution are satisfied), green marks the optimal one according to search.

3rd item can fit, adding 5, 25 to partial solution.

Last item (i=4) will not fit, hence may not be added.
$v+(W-w) \frac{v_{i+1}}{w_{i+1}}$

i	w_{i}	v_{i}	v_{i} / w_{i}
1	4	40	10
2	7	42	6
3	5	25	5
4	3	12	44

Branch-bound Knapsack Check Result

Quiz

Determine the counts: nodes max in tree, nodes bound checked, nodes bound calculation avoided.

Exercise

Construct a tree for the Knapsack instance from the review slide.

Exercise

Compare to the exhaustive search solution. Hints: use Excel to generate table, lookup websites that generate subsets.

\boldsymbol{i}	w_{i}	v_{i}	v_{i} / w_{i}
$\mathbf{1}$	4	40	10
2	7	42	6
3	5	25	5
4	3	12	4

ϕ	0	0
$\{1\}$	7	42
$\{2\}$	3	12
$\{3\}$	4	40
$\{4\}$	5	25
$\{1,2\}$	10	54
$\{1,3\}$	11	-
$\{1,4\}$	12	-
$\{2,3\}$	7	52
$\{2,4\}$	8	37
$\{3,4\}$	9	65
$\{1,2,3\}$	14	-
$\{1,2,4\}$	15	-
$\{1,3,4\}$	16	-
$\{2,3,4\}$	12	-
$\{1,2,3,4\}$	19	-

Efficiency? compare

Branch-bound Knapsack Compare Methods

Convert search of combinatorially increasing items to a tree search (DFS, backtracking etc., guided by a bounding function in branch-bound).

	From	To
Search	Sequential	Tree
State-space	Full solution	Partial solution
Exclusion	Cost function	Boundary function
Optimal solution		
Guarantee	Always	
At cost	$\Theta\left(2^{n}\right)$	
Solution path		

Branch-bound Knapsack Efficiency

Traveling Salesman

$\begin{array}{lcccc} \mathrm{b} & 3 & -6 & 7 \\ \mathrm{c} & 1 & 6 & -4 \end{array}$

[^0]
• Nearest pair average

An upper bound previously signaled a more promising branch to find an optimally maximized value-sum.
a b c d e
$\lceil[(1+3)+(3+6)+(1+2)+(3+4)+(2+3)] / 2\rceil$

Exercise

Write an expression for indicated bounds.

(4) | | | a | b | c | d | e |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | a | - | 3 | 1 | 5 | 8 |
| 2 | b | 3 | - | 6 | 7 | 9 |
| 3 | c | 1 | 6 | - | 4 | 2 |
| 4 | d | 5 | 7 | 4 | - | 3 |
| 5 | e | 8 | 9 | 2 | 3 | - |

$1,2,3,4,5,1$	24	$1,5,2,4,3,1$	29
$1,3,2,4,5,1$	25	$1,2,5,4,3,1$	20
$1,4,2,3,5,1$	28	$1,4,5,2,3,1$	24
$1,2,4,3,5,1$	24	$1,5,4,2,3,1$	25
$1,3,4,2,5,1$	29	$1,2,4,5,3,1$	16
$1,4,3,2,5,1$	32	$1,4,2,5,3,1$	24
$1,4,3,5,2,1$	23	$1,3,2,5,4,1$	24
$1,3,4,5,2,1$	20	$1,2,3,5,4,1$	19
$1,5,4,3,2,1$	24	$1,5,3,2,4,1$	28
$1,4,5,3,2,1$	19	$1,3,5,2,4,1$	24
$1,3,5,4,2,1$	16	$1,2,5,3,4,1$	23
$1,5,3,4,2,1$	24	$1,5,2,3,4,1$	32

Choices end once the beforelast internal city is determined.

Branch-and-Bound Optimal Tour

\Rightarrow Live node
ᄃ Best-first rule

Exercise

Check the tour length of abdeca if it starts at b (bdecab). Write indicated tours.

Check paths starting with $14,15$.

Exercise

Write an expression for indicated bound.

[^1]Not all instances, good ones (solvable in reasonable time) unpredictable, bounding functions vary (some better tailored for application or a subset of instances).

Problem may suggest heuristics to speed up solution (cut branches earlier, for example).

Exercise

Compare efficiency of solution of the assignment problem by the B\&B in textbook to the best versions of the
Hungarian method and to a trivial lower bound.
\Rightarrow Limitations vs opportunities
\Rightarrow Compare to brute-force
\Rightarrow Assignment vs. the other two
Tractable based on known efficiency (how come?) Is there a lower bound?

[^0]: (0)

 HC observations:
 Tour pattern, combinatorial object, arbitrary role of tour start/end verts, opposite tours redundant (pick: 2-before-3 rule).

 ## Quiz

 How many unique HC are checked by exhaustive search? (Ans. next slide).

 Classic formulation (statement) Shortest tour through a set of cities visiting each exactly once before returning to the start

[^1]: a b c d e
 a -3158
 b $3-679$
 c $16-42$
 d $574-3$
 e 8923 -

