Review
 Previously

In other words, efficiency depended on listing a combinatorial object.

* In each case, an optimal solution can be found after exhausting all solution possibilities that grow combinatorially with input size.

Selection sort performs all possible (distinct) pair-wise key comparisons, in a sense, a brute-force approach to sorting.

Next

1. Answer 2 questions of theoretical interest
2. Useful tools:

Q Lower bounds
Q Nondeterministic algorithms
Decision problems
Polynomial reductions

Selection sort does not check possible orderings like a combinatorial view of sorting may suggest.
The Assignment Problem is different than $K P$ and TSP in that, like sorting, it has polynomial-bounded efficiency solutions.

Useful Tools
 Lower Bounds

For example, is 2^{n} the best we can do for the Knapsack Problem? for any algorithm, ever?

Argue about a class of algorithms, some perhaps unknown, via shared characteristics.
\Rightarrow Interesting question What's the best possible efficiency for any algorithm to solve a given problem?

Sign of determinant depends on which side of line point R lies.

$$
D \leq_{\operatorname{m}} \bigcirc
$$

Reduction involves a function that maps instances of P to instances in Q for all instances (i.e., get same result from either).

Id original problem P and its question, reduced problem Q and its equivalent question.

ζ

\Rightarrow Revisit problem reduction

relative pos; which side of line?

$$
\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x & y & 1
\end{array}\right|=\begin{array}{r}
x_{1} y_{2}+x y_{1}+x_{2} y \\
-x y_{2}-x_{2} y_{1}-x_{1} y
\end{array}
$$

compute a determinant;
what's the sign?
Reduction as solution startegy
Thinking map
Reduction pattern?
typical places to look for answers?

Lower Bounds Problem Reduction

P Unknown problem
 Q Known problem

\triangleleft Reduce to $Q \equiv$ use Q to solve P

$$
P \leq_{\mathrm{m}} Q
$$

$\operatorname{Sign}\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x & y & 1\end{array}\right|$

Reverse direction to argue limits $Q \leq_{\mathrm{m}} P$

If better solution could be obtained through P, then a proven tight lower bound for Q must be wrong!

For sorting as Q, a reliably tight $\Omega(n \log n)$ applies to P as well, i.e., it can't be solved more efficiently.
\Rightarrow Reduce known Q to P

Q has a credible lower bound

 Try to use P to solve Q deise a tansformationExamples... KP \leq_{m} TSP? (easily, atually, implicition? Other problems like P ? next

Practically, best known efficiency of Q applies to all possible reduction targets (a class of problems?).

An efficient reduction can serve as a basis for an equivalence in complexity. Either both sides are efficient or not.

An existence question or, in a more typical context to evaluate known algo rithms; either way, must specify the term efficient (otherwise, efficiency is relative).

Interesting question
Is there an "efficient" algorithm to solve given problem?

Polynomial-bounded algorithms solve majority of interesting problems in a reasonable time, in most cases for all (at least most) interesting instances.

> A useful approach to answer Arbitrary but reasonable, based on computation cost and usefulness: run time behavior \equiv cost

Quiz
Give 3 examples of problems solved by a deterministic algorithm (name it).

Have a valid procedure to get result
Nondeterministic: 2 stages

(1)

No steps need be specified to obtain a no-cost guessed result.

We must know steps to verify that a result is correct, i.e., deterministically.

Exercise

Describe a nondeterministic algorithm for the assignment problem.
(1) Guessing, suggest a result (2) Verification, a valid procedure to check result polynomial-bounded solutions can provide an algorithm, a procedure for a self-verified result, for use in step 2.
cs681fig11-14.cdr

Advocated by Jack
Edmonds in famous 1965 paper Paths, Trees, and Flowers.

Quiz

Can the Johnson-Trotter algorithm be considered efficient?

Exercise
Compare solutions of assignment problem via exhaustive search or the Hungarian method. Can we verify an answer efficiently?

If we can only check solution in polynomial time, the algorithm is non-deterministic polynomial.

Algorithm Efficiency
s) Nondeterminsitic polynomial
\Rightarrow Tractable [problem]

Polynomial runtime \equiv efficient Worst-case run time grows like a polynomial of input size (n), or better

When is an algorithm efficient? Deterministic, polynomial time ${ }^{\left({ }^{\circ}\right)}$ Non-deterministic, but to check result is deterministic polynomial

Algorithm Efficiency Conclusion

Polynomials place a bound on reasonable growth of runtime or the number of steps (same since each step must finish in finite time), which always yields a useful result.

Practically, a problem may not be solved efficiently if no known deterministic polynomial or no non-deterministic polynomial algorithms exist, i.e., problem intractable.

A Useful Tool

Decision Problems
 is a given integer prime? Can a key be found in a list? ...

Quiz

How can sorting be formulated as a decision problem? (2 versions.)

Simple to formalize with no loss of generality, decision problem form is convenient as a tool to study power of computing machines.

Interesting problems can always be formulated as decision (decision versions)

 Consistent basis for theory to answerquestions about algorithm limitations

Write a formal statement of the Halting Problem.

Decision Problems Decidability
\Rightarrow Intractability
\Rightarrow Undecidable $=$ no algorithm!
Generally rare, famous example: the halting problem by Alan Turing
\Rightarrow Decidable problems
2 Tractable (\equiv easy), or known hard
Unknown (intractable? so far)

Decision Problems
\Rightarrow Conjunctive (maxterm)

Exercise
Give examples of inputs (instances). Hint: see description below.
> \Rightarrow Satisfiability (SAT) i.e., truth $\{\text { Boolean var }\}_{n},\{\text { Bool. clause }\}_{r}$; is there a set of true/false values such that all clauses are true?

A generic instance consists of \boldsymbol{n} variables + conjunctive (joined via AND) r clauses, composed of subsets of the vars and their complements combined via OR (disjunctively).

Exercise

State the chromatic number graph coloring problem as a decision problem.

CNF (conjunctive normal form) = Boolean product-of-sums

Sample instances

\neg Hamiltonian circuit

\Rightarrow Knapsack (?) decision version, template

Decision Problems
 A Note on Utility

66 Decision problems are too limited. Some computational problems are not easily expressed as decision problems. Indeed, we will introduce several classes in the book to capture tasks such as computing non-Boolean functions, solving search problems, approximating optimization problems, interaction, and more. Yet the framework of decision problems turn out to be surprisingly expressive, and we will often use it in this book. 99

Sanjeev Arora and Boaz Barak
ISBN-13 : 978-0521424264

Decidable Problems A Classification
 \Rightarrow Complexity class

Tractable problems are "easy" since we know how to solve them efficiently (i.e., feasible for all instances).

$\mathbf{P} \subseteq \mathbf{N P}$

A valid procedure must always halt with a result (either computed or, if given, verified at least) in reasonable time.

Set of (deterministic) polynomial decision problems, \mathbf{P}

Set of nondeterministic polynomial decision problems, NP

Neither clearly in P nor outside NP, but similarly hard (next)

Problem Classification NP-Complete Problems
 \Rightarrow Polynomial reducibility

Ω $\begin{aligned} & \text { No proof one is not possi- } \\ & \text { ble either (i.e., credible } \\ & \text { lower bounds). }\end{aligned}$
l

Deterministic (but not P), \&-polynomially verifiable (so NP), easy reduction target

Examples

$$
P \in \mathbf{N P C} \Leftrightarrow \quad Q \leq_{\mathrm{m}} P
$$

All problems in NP 8are polynomially reducible to P. $\Rightarrow P \in \mathbf{N P}, \forall Q \in \mathbf{N} \mathbf{P} \leq_{p} P$

Polynomially reducible
A function to map yes/no instances in polynomial time

$$
\begin{gathered}
q_{\mathrm{YES}} \mapsto p_{\mathrm{YES}} \\
q_{\mathrm{No}} \mapsto p_{\mathrm{No}}
\end{gathered}
$$

NP-Complete Problems 2nd Generation

NP-Complete Problems Practical Implications

Karp 1972, Reducibility Among Combinatorial Problems.

(1)

Similarly hard to any in NP including each other.

8 Better manage time and effort.

Solve, in theory, means for all instances (quicksort solves sorting efficiently for all finite lists).
Branch-and-bound is one such method (later).

\Rightarrow 2-Step proof (Karp 21)

ᄃ Solving one is enough
\Rightarrow Important to recognize
ᄃ Interesting instances? There are ways to deal with complexity when we focus on some instances

Exercise

Give at least 3 examples for each case.
\Rightarrow Polynomial time solvable Deterministic algorithm solves problem in polynomial runtime

Quiz

σ
Can a Hamiltonian circuit problem be polynomially reduced to a Eulerian circuit question?

Polynom reducibility to any NPC is useful!
\Rightarrow Polynomial time verifiable
Verify a solution in polynomial time
\Rightarrow Polynomial time reducible Reduce to problem in polynomial time

${ }_{K P \in P \leftrightarrow P=N P}$ Open question: $\mathbf{P} \stackrel{?}{=} \mathbf{N P}$

The Halting Problem is the most notable example of a problem outside NP.

Exercise

What's the efficiency of a sorting algorithm in which permutations of input items are checked until the right (sorted) one is found?

Oddly, this is all we seem to be able to do for some interesting problems!

Check $K P \leq_{p} T S P$

Step 2: use the pseudocode to show reduction to be polynomial.

Is $K P$ reducible to TSP? Show TSP NPC based on the KP

ISBN-13: 978-0262045308

Reprinted \#36 (Cook'71 \#34)
Richard M. Karp, Reducibility Among Combinatorial Problems, 1972
\Leftrightarrow JACK EDMONDS, PATHS, TREES, AND FLOWERS, 1965
\Leftrightarrow Garey and Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (Series of Books in the Mathematical Sciences), 1979
\Leftrightarrow Sanjeev Arora and Boaz Barak, Computational Complexity: A Modern Approach 1st Edition, 2009 ISBN-13: 978-0521424264
\Leftrightarrow Erik D. Demaine, William Gasarch, and Mohammad Hajiaghayi, Computational Intractability: A Guide to Algorithmic Lower Bounds, DRAFT October 15, 2023
\Leftrightarrow Anany Levitin, Introduction to the Design and Analysis of Algorithms 3rd Edition, 2011 ISBN-13: 978-0132316811

