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Solve for n = 2k using backward substitutions. Show at least 3.

x(n) = x(n/2) +n, x(1) = 1

Solution: Substitutions build a series by expanding a partial sum. Each substitution adds a

term to the series. To see the summation unfold, do not collect the terms or simplify.
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Therefore, 2n− 1 coupled with n > 0 is the solution to the recurrence relation x(n) = x(n/2) + n

with the initial condition x(1) = 1 when n is power of 2 (i.e., n = 2k). It is also the generic term

for a family of sequences specified by the recurrence alone. The initial condition specifies a

particular one in that family.

Exercise: Repeat for x(n) = x(n/2) + (n − 1), x(1) = 1. Write the sequence, check results in

WolframAlpha.


