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Solve for n = 2F using backward substitutions. Show at least 3.
x(n)=x(n/2)+n, x(1)=1

Solution: Substitutions build a series by expanding a partial sum. Each substitution adds a

term to the series. To see the summation unfold, do not collect the terms or simplify.

x(n) = x(g) +n replace n by n/2
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:X(§)+§ +E+7/l subst 2
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= x(i) + s +i + i +n subst 3 (notice powers)
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Note the pattern: x(zﬁ) followed by %

To drop to x(1), set i = k since 2F = n
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Therefore, 2n—1 coupled with n > 0 is the solution to the recurrence relation x(n) = x(n/2)+n
with the initial condition x(1) = 1 when 7 is power of 2 (i.e., n = 2¥). It is also the generic term
for a family of sequences specified by the recurrence alone. The initial condition specifies a

particular one in that family.

Exercise: Repeat for x(n) = x(n/2)+ (n—1), x(1) = 1. Write the sequence, check results in
WolframAlpha.



