Polynomial Evaluation

-> Polynomial degree

Calculate *p* at an x-value (a point)

 $p(x) = a_n x^{(n)} + \dots + a_1 x + a_0$

Seems to involve

Computing n terms of form *a_i cⁱ* Exponentiation of some constant

Definition naturally suggests multiplication as a basic operation.

© 2022 Dr. Muhammad Al-Hashimi

⇒ How well can we exponentiate?

cs223fig34.cdr Friday, May 20, 2022 10:26:53 PM Color profile: Disabled Composite Default screen

Polynomial Evaluation Brute Force Approach

$2x^4 - x^3 + 3x^2 + x - 5$

Multiplications, M(n) = ?

Quiz How many multiplications are needed for the example?

a **multipoint** (*c*₁, *c*₂, ... *c*_m) evaluation scenario?

 \otimes How many per term? x^i , $a_i \times x^i$

How many terms? Note decreasing exponent Quiz Is this approach favorable for Security Resulting efficiency

© 2022 Dr. Muhammad Al-Hashimi

Quiz

KALL • CPCS-223 2

cs223fig34.cdr Friday, May 20, 2022 10:26:54 PM Color profile: Disabled Composite Default screen

Polynomial Evaluation Representation Change

= x(x(x(2x - 1) + 3) + 1) - 5

-1

Horner's rule

Exercise Transform p(x) to the alternate algebraic form.

\bigcirc

Each column (nested factor) may correspond to an iteration in a for-loop.

 $x^n = xx^{n-1}$

Once n-1 power of x is obtained, do we really need to recompute it to get the next power?

Helps to view an initial inner factor associated with coefficient a_n .

 $x(x(x((2)x-1)\cdots$

© 2022 Dr. Muhammad Al-Hashimi

Observation

 \Rightarrow M(n) = ? By inspection? In general (guess)

 $p(x) = 2x^{4} - x^{3} + 3x^{2} + x - 5$

► Pen-paper example (x=3) ^A Focus on developing the procedure rather

than getting a final result.

cs223fig34.cdr Friday, May 20, 2022 10:26:54 PM Color profile: Disabled Composite Default screen

Polynomial Evaluation Horner's Rule

Quiz What's the efficiency if addition was chosen as basic operation? Algorithm Horner Input P[0..n] coefficients $a_0 \cdots a_n$ of polynomial p, point xOutput Polynomial value p(x)1: $p \leftarrow P[n]$ 2: for $i \leftarrow n-1$ downto 0 do

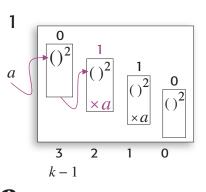
- 3: $p \leftarrow x \times p + P[i]$
- 4: **return** *p*

Sefficiency Applications

© 2022 Dr. Muhammad Al-Hashimi

cs223fig34.cdr Friday, May 20, 2022 10:26:55 PM Color profile: Disabled Composite Default screen

Representation Change Binary Exponentiation


Successive squaring

Exercise

ate a22 (binary 10110) where k is #steps. Compare to the diagram depicting polynomial evaluation via Horner's rule.

Use the diagram to gener- Key idea

Successive squaring Simple examples

The calculation sequence suggested by Horner's Pen-paper procedure

to algorithms that utilize Algorithms (next)

© 2022 Dr. Muhammad Al-Hashimi

rule + an older idea of exponentiation via successive squaring lead

a change of representation of the exponent.

cs223fig34.cdr Friday, May 20, 2022 10:26:55 PM Color profile: Disabled Composite Default screen

Binary Exponentiation An Algorithm

١

Exercise Compare to a decrease-byconstant factor based on the formula $(a^{n/2})^2$. **Hint**: write the recurrence.

Essentially, iterate on an exponent's logarithm (rather than the exponent itself).

Exercise Modify the pseudocode to initialize *p* with 1. Will performance change?

© 2022 Dr. Muhammad Al-Hashimi

Algorithm LeftRightBinaryExponentiation Input Number a Input Binary representation $b_1 \cdots b_1 b_0$ of integer exponent n > 0Output a^n $l \leftarrow k$ 1: $p \leftarrow a$ 2: for $i \leftarrow l-1$ downto 0 do

2: For $i \leftarrow i - 1$ down 3: $p \leftarrow p \times p$ 4: if $b_i = 1$ then 5: $p \leftarrow p \times a$

6: **return** *p*

Efficiency?

cs223fig34.cdr Friday, May 20, 2022 10:26:56 PM Color profile: Disabled Composite Default screen

Representation Change Conclusions

0

Ш Exercise Write a recurrence for a divide-conquer exponentiation. Is it a good idea? Hint: use WolframAlpha to check solution.

8

A representation change proves to be a better strategy than trying to improve exponentiation performance.

<u>1</u>0

tion (problem, algorithms, compare efficiencies).

Polynomial evaluation

Via exponentiation Using Horner Rule

Exercise W Aultipoint scenario

© 2022 Dr. Muhammad Al-Hashimi

KALL • CPCS-223 7

Connections Styles of Iteration

0

Exercise Write a summation or a recurrence for <u>definition-based</u> bottom-up and top-down decrease-by-1 algorithms to calculate a^n .

Structure in the second se

Example: exponentiation Binary vs. decrease-by-const-factor

© 2022 Dr. Muhammad Al-Hashimi