cs223fig3.cdr Thursday, January 27, 2022 12:14:57 PM Color profile: Disabled Composite Default screen

Pseudocode = mix of natural language, math, and programming-like expressions.

Analysis of Algorithms Exercise

Seudocode Problem instance

Algorithm SequentialSearch Input Array A[0...n - 1], search key KOutput Index of first element of A to match K, otherwise -1 i $i \leftarrow 0$ 2: while i < n and $A[i] \neq K$ do 3: $i \leftarrow i + 1$ 4: if i < n then return $i \Rightarrow$ found if i in range 5: return -1O Select suitable input size parameter 2 Identify a basic operation 3 Check dependance of basic op 4 Determine count C(n), somehow

③ Determine order of growth of C(n)

© 2022 Dr. Muhammad Al-Hashimi

KAU • CPCS-223 1

expressions.

Quiz What to change about input to increase run time?

Exercise

Write down 2 **instances** of the search problem that *SequentialSearch* solves.

Analysis of Algorithms Effciency

Observation

Time efficiency of most algorithms falls into a few categories of (runtime) growth

A classification?

A system for classifying efficiency should avoid dealing individually with efficiency of potentially 1000s of algorithms

© 2022 Dr. Muhammad Al-Hashimi

cs223fig3.cdr Thursday, January 27, 2022 12:14:58 PM Color profile: Disabled Composite Default screen

A Useful Tool from Math Asymptotic Classification

© 2022 Dr. Muhammad Al-Hashimi

© 2022 Dr. Muhammad Al-Hashimi

Asymptotic Classification Setting Lower Boundary

© 2022 Dr. Muhammad Al-Hashimi

Asymptotic Classification Θ – Similar Growth

FIGURE 2.3 Big-theta notation: $t(n) \in \Theta(g(n))$

© 2022 Dr. Muhammad Al-Hashimi

Asymptotic Classification Exercise

© 2022 Dr. Muhammad Al-Hashimi

Asymptotic Classification A Useful Property

© 2022 Dr. Muhammad Al-Hashimi

cs223fig3.cdr Thursday, January 27, 2022 12:14:59 PM Color profile: Disabled Composite Default screen

Another Useful Math Tool Using Limits

A math limit can investigate relative growth behavior as $n \rightarrow \infty$ (which function grows faster).

Which efficiency class of g(n)?

 $\lim_{n \to \infty} \frac{t(n)}{g(n)} = \begin{cases} 0 \\ c > 0 \end{cases}$

? t(n) g(n) $\lim_{n \to \infty} \frac{t(n)}{g(n)}$ $\frac{1}{4}n^2 + 5$ n^2 n 1 5.25 1.00 5.25000 2 6.00 4.00 1.50000 3 7.25 9.00 0.80556 4 9.00 16.00 0.56250 5 11.25 25.00 0.45000 6 14.00 36.00 0.38889 7 17.25 49.00 0.35204 8 21.00 64.00 0.32813 • • • \bigcirc 97 0.25053 2357.25 9409.00 0.25052 98 2406.00 9604.00 0.25051 99 2455.25 9801.00 100 2505.00 10000.00 0.25050 • • • 447 199809.00 0.25003 49957.25 0.2500 448 50181.00 200704.00 449 50405.25 201601.00 0.2500 0.2500 1000 250005.00 100000.00 • • •

Exercise Use Excel to mathematically compare growth of functions from the Exercise slide. For example: the truth of $n^3 \in \Omega(n^2)$.

© 2022 Dr. Muhammad Al-Hashimi

Algorithm Efficiency Basic Classes

Using long-term (limiting) runtime behavior to classify efficiency as inputs become increasingly larger.

TABLE 2.2 Basic asymptotic efficiency classes

Asymptotic efficiency

Class	Name	Comments
1	constant	Short of best-case efficiencies, very few reasonable examples can be given since an algorithm's running time typically goes to infinity when its input size grows infinitely large.
log n	logarithmic	Typically, a result of cutting a problem's size by a constant factor on each iteration of the algorithm (see Section 5.5). Note that a logarithmic algorithm cannot take into account all its input (or even a fixed fraction of it): any algorithm that does so will have at least linear running time.
n	linear	Algorithms that scan a list of size n (e.g., sequential search) belong to this class.
n log n	"n-log-n"	Many divide-and-conquer algorithms (see Chapter 4), including mergesort and quicksort in the average case, fall into this category.
<i>n</i> ²	quadratic	Typically, characterizes efficient 2^n exponential Typical for algorithm two embedded loops (see the tary sorting algorithms and construction n -by- n matrices are standard e to the targent of targent of the targent of
<i>n</i> ³	cubic	Typically, characterizes efficient three embedded loops (see the nontrivial algorithms from line class. growth as well. Typical for algorithm of an <i>n</i> -element set.

© 2022 Dr. Muhammad Al-Hashimi