Systems of Linear Equations Analysis

Algorithm GaussElimination...

1: for $i \leftarrow 1$ to n do $A[i, n+1] \leftarrow b[i]$ 2: for $i \leftarrow 1$ to n-1 do 3: for $j \leftarrow i+1$ to n do 4: multiplier $\leftarrow A[j,i]/A[i,i] \triangleright$ compute row multiplier once 5: for $k \leftarrow i$ to n+1 do 6: $A[j,k] \leftarrow A[j,k] - A[i,k] *$ multiplier

What's the efficiency?

Back substitution

Solution, system of linear equations

Quiz What is the efficiency if the coefficients matrix happens to be **upper triangular**.

© 2022 Dr. Muhammad Al-Hashimi

cs223fig29.cdr Wednesday, April 13, 2022 7:09:27 AM Color profile: Disabled Composite Default screen

Gaussian Elimination Corrections

-> Scaling factor

-> Partial pivoting

http://www.hashimi.ws/cs223/figs/ieee_addition2.pdf

Important to realize that first pseudocode doesn't describe a correct algorithm.

$\zeta \begin{pmatrix} 2 & -1 & 1 & 1 \\ \mathbf{4} & 1 & -1 & 5 \\ 1 & 1 & 1 & 0 \end{pmatrix}$

Algorithm BetterElimination • • • 1: for $i \leftarrow 1$ to n do $A[i, n+1] \leftarrow b[i]$ 2: for $i \leftarrow 1$ to n - 1 do find row j with largest value in column i3: swap rows i, j (make j pivotrow) **4**: for $j \leftarrow i + 1$ to n do 5: $\boldsymbol{m} \leftarrow A[j,i]/A[i,i]$ ▷ row multiplier 6: for $k \leftarrow i$ to n+1 do 7: $A[j,k] \leftarrow A[j,k] - A[i,k] * \textit{m}$ 8:

© 2022 Dr. Muhammad Al-Hashimi

cs223fig29.cdr Wednesday, April 13, 2022 7:09:27 AM Color profile: Disabled Composite Default screen

Gaussian Elimination An Algorithm

Exercise Find the simpler instance after partial pivoting.

Exercise Swap columns 1,2 in addition to partial pivoting in WolframApha, verify that solution stays the same.

Algorithm *BetterElimination* **Input** Coefficients matrix A[1..n, 1..n], vertor b[1..n]Output Reduced augmented A, equivalent upper matrix in-place

```
1: for i \leftarrow 1 to n do A[i, n+1] \leftarrow b[i]
2: for i \leftarrow 1 to n - 1 do
```

3:	$pivotrow \leftarrow i$ $ ho$ Lines 3-6 replace default by row with max value under i
4:	for $j \leftarrow i + 1$ to n do
5:	if $ A[j,i] > A[pivotrow,i] $ then $pivotrow \leftarrow j$
6:	for $k \leftarrow i$ to $n + 1$ do swap $A[i, k], A[pivotrow, k]$
7:	for $j \leftarrow i + 1$ to n do
8:	$m \leftarrow A[j,i]/A[i,i]$
9:	for $k \leftarrow i$ to $n+1$ do
10:	$A[j,k] \leftarrow A[j,k] - A[i,k] * m$
	KALL & CDCC 227 3

© 2022 Dr. Muhammad Al-Hashimi

Gaussian Elimination Applications

Solution system of linear equations

Gaussian elimination is fundamental to matrix processing (just like sorting for lists).

Computing matrix inverse

Computing the determinant

© 2022 Dr. Muhammad Al-Hashimi

cs223fig29.cdr Wednesday, April 13, 2022 7. Gaussian Elimination Applications Color profile: Disabled LU Decomposition

Amortized efficiency

Quiz Where did elements of L,U come from?

 $\begin{pmatrix} - \\ 4 & 1 & -1 \\ 1 & 1 & 1 \end{pmatrix}$

Exercise 🕲

Find decomposition after partial pivoting, write the re-arranged matrix A.

Quiz

What's the (overall) efficiency of solving a system given an LU decomposition of coefficients matrix?

Quiz

What about a sequence of systems with different right-hand side vectors and the same coefficients?

© 2022 Dr. Muhammad Al-Hashimi

 $\begin{array}{c} 1 & 1 \\ 1 & 1 \\ U = \begin{pmatrix} 2 & -1 & 1 \\ 0 & 3 & -3 \\ 0 & 0 & 2 \end{pmatrix} \quad L = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ \frac{1}{2} & \frac{1}{2} & 1 \end{pmatrix}$ LUx = b $\mathbf{A}\mathbf{x} = \mathbf{b}$

Ly = b Ux = y

Composite Default screen

cs223fig29.cdr Wednesday, April 13, 2022 7. Gaussian Elimination Applications Color profile: Disabled **Matrix Inverse**

Singular matrix

Identity matrix

Importance

 $\mathbf{A}^{-1}\mathbf{A}\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$ $\mathbf{k} \mathbf{x} = \mathbf{A}^{-1} \mathbf{b}$

Computing the inverse

($a_{11} \\ a_{21}$	$a_{12} \\ a_{22}$	•••	$\begin{vmatrix} a_{1n} \\ a_{2n} \end{vmatrix}$	$\begin{pmatrix} x_{11} \\ x_{21} \end{pmatrix}$	$egin{array}{c} x_{12} \ x_{22} \end{array}$		$\begin{pmatrix} x_{1n} \\ x_{2n} \end{pmatrix}$		$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$	0 1	•••	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$
	\vdots a_{n1}	a_{n2}		a_{nn}	$\begin{cases} \vdots \\ x_{n1} \end{cases}$	x_{n2}	•••	x_{nn}	=	$\left \begin{array}{c} \vdots \\ 0 \end{array} \right $	0		1
$\mathbf{A} \mathbf{A}^{-1}$												KALL • CE	205-223 6

 $\mathbf{A}^{-1}\mathbf{A} = I = \mathbf{A} \mathbf{A}^{-1}$

Ш

Quiz How can Gaussian elimination be used to test if matrix is singular?

Exercise

Use *WolframAlpha* to find A^{-1} (from Slide 3), verify solution to the system of equations.

Exercise

Compare the cost of computing the inverse via Gaussian elimination for each of the n systems of equations, or using the LU decomposition of A then solving for each column in I.

© 2022 Dr. Muhammad Al-Hashimi

cs223fig29.cdr Wednesday, April 13, 2022 7:09:28 AM Color profile: Disabled Composite Default screen

Gaussian Elimination Take Home

Basic methods and strategies to compute the solution of a system of linear equations and related matrix operations, interesting scenarios, and resulting efficiencies.

Basic methods and strategies to compute the solution of a Computational effort

Scenarios, efficiencies

Use WolframAlpha to study

Exercise Look up info about the test workload suite Linpack.

Applications of matrix and linear algebra

© 2022 Dr. Muhammad Al-Hashimi