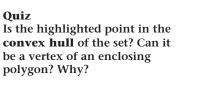
Quiz

a convex set?


Convex Hull Review

•

 $P_1 = (x_1, y_1), \dots, P_n = (x_n, y_n)$

•

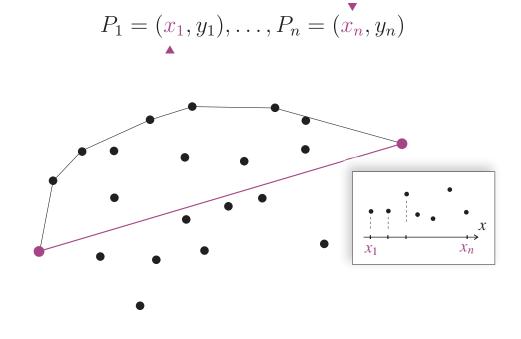
Exercise Draw the **convex hull** of the set.

Examine line segments (distinct pairs of points) against each of the remaining n-2

Is the set of points $P_1 \dots P_n$

Brute force $O(n^3)$, can we do better?

© 2022 Dr. Muhammad Al-Hashimi


points.

Divide-Conquer Convex Hull Initializations

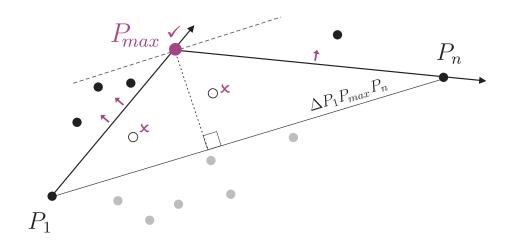
Upper/lower hull

Quiz

How to quickly determine left-most and right-most points? What about points on $\overline{P_1P_n}$?

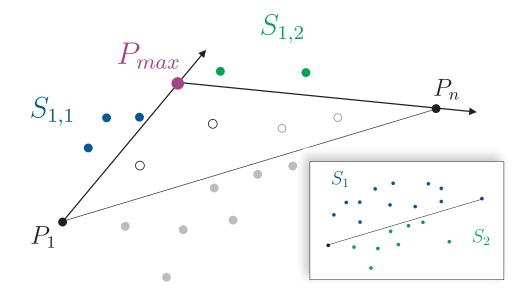
© 2022 Dr. Muhammad Al-Hashimi

Divide-Conquer Convex Hull Basic Procedure


۲

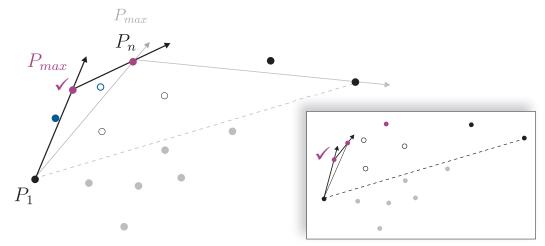
 $P_{\rm max}$ divides the upper set into 3 sets.

3 Observations


How can the highlighted point be selected? **Hint**: see details slide.

© 2022 Dr. Muhammad Al-Hashimi

Divide-Conquer Convex Hull A Partition


Each partition identifies a vertex on the upper hull + creates 2 sets to check next.

© 2022 Dr. Muhammad Al-Hashimi

Divide-Conquer Convex Hull Quickhull

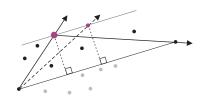
Previous P_{max} becomes P_n for this round.

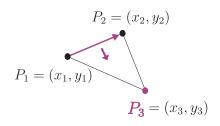
⇒ Repeat recursively □ ⇒ Merge procedure

© 2022 Dr. Muhammad Al-Hashimi

A Quickhull Algorithm Computational Details

Quiz What if many

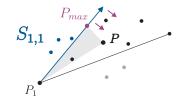

What if many points qualify to partition set?


Quiz What is the sign of the determinant in the figure?

 \Rightarrow How to determine P_{max} ?

\Rightarrow Use result for $\Delta P_1 P_2 P_3$

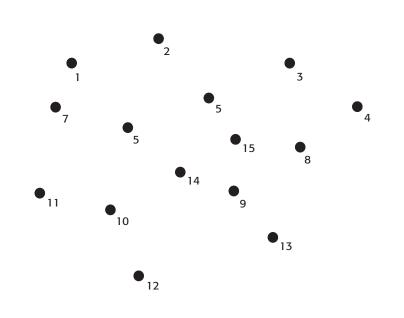
 $\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = x_1 y_2 + x_3 y_1 + x_2 y_3 \\ - x_3 y_2 - x_2 y_1 - x_1 y_3$



Quiz Write an expression for $S_{1,2}$.

 $r > To determine S_{1,1}$

$$\forall P = (x, y) \in S_1, \text{ check } \det \Delta \overrightarrow{P_1 P_{max}} P$$

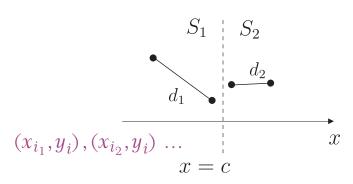

KAU • CPCS-223 6

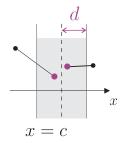
© 2022 Dr. Muhammad Al-Hashimi

A Quickhull Algorithm © Exercise

Exercise

Perform a *Quickhull* by hand. Show for each step: Pmax, excluded points, sets of points to consider next, and the resulting convex hull vertices.

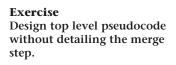


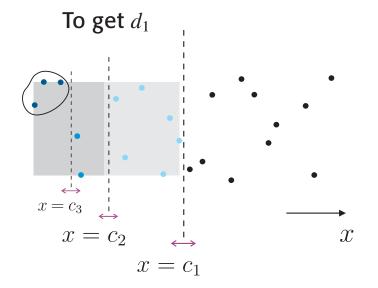

© 2022 Dr. Muhammad Al-Hashimi

Divide-Conquer Closest Pair Basic Procedure

 $S = \{P_1, P_2, P_3, P_4\}$ $(x_1, y_1) \dots$

Quiz How to quickly determine a partition point C? How many points in each subset in general? **Hint**: think about algorithm inputs (*x*_{*ik*}: *i* original index, *k* ordered/sorted index).



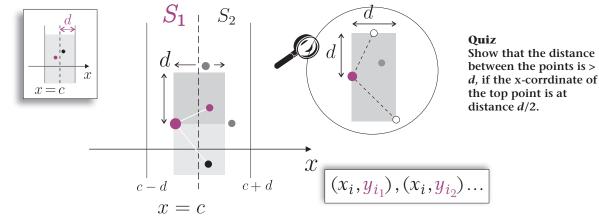

Determine separately, combine

 $d = \min(d_1, d_2)$ Check pairs around x = c

© 2022 Dr. Muhammad Al-Hashimi

Divide-Conquer Closest Pair Repeat Recursively

Divide if points > 2 (or 3) otherwise return a distance.


Keep dividing until set is 3 or less points

© 2022 Dr. Muhammad Al-Hashimi

Divide-Conquer Closest Pair Merge Procedure

Points outside clearly farther than *d* but not all inside are closer.

Even inside P_i 's box some points are farther away than d.

 $\forall P_i \in \mathbf{S}_1(c - d \le x \le c), \text{ check } \{P_j \in S_2(c \le x \le c + d)\}$

^{B--} Major result: no more than <u>six neighbors</u> to consider per point

© 2022 Dr. Muhammad Al-Hashimi

Performance Results

Quiz Compare problem size reduction in each case.

Quiz Write the recurrence, determine order of growth of solution.

-> Recurrence pattern

Divide-conquer closest pair

Quickhull worst and average

Compare to brute force

Exercise Lookup best and average case efficiencies of the brute force convex hull of Chapter 3.

© 2022 Dr. Muhammad Al-Hashimi