Multiply Integers

 1234×5678

Quiz What's a basic operation in the classic pen-paper procedure?

- ⇔ Classic procedure
- ⇒ Basic operation
- **⇔** Efficiency (brute force)

Multiply Integers Another Procedure

Quiz

Why would x, x^2 not be considered in multiplication count?

Try 2-digit integers (n=2)

③

Each constant involves 1 novel multiplication.

$$(ax + b)(cx + d) = acx^{2} + (ad + bc)x + bd$$

$$C_{1}$$

$$C_{1} \times 10^{n} + C_{3} \times 10^{n/2} + C_{2}$$

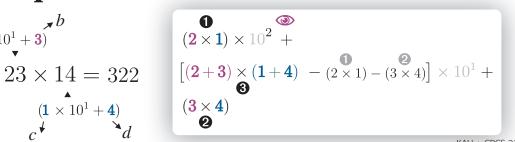
$$(a + b) \times (c + d)$$

$$-ac - bd$$

$$C_{3}$$

Exercise

Determine the 3 constants. Repeat for 12×34 .


Example

$$a \xrightarrow{b} b$$

$$23 \times 14 = 322$$

$$(1 \times 10^{1} + 4)$$

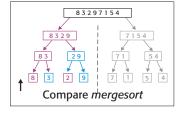
$$c \xrightarrow{d} d$$

© 2022 Dr. Muhammad Al-Hashimi

KAU • CPCS-223 2

Multiply Integers Bigger Example

Exercise

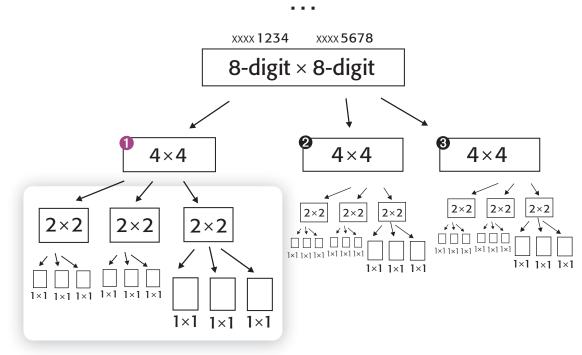

Determine *C*1, *C*2, *C*3 and verify the formula (sub figure) indeed gives the correct answer.

Apply to 4-digit integers

Repeat previous 2-digit multiplication

© 2022 Dr. Muhammad Al-Hashimi

Multiply Integers **Divide-Conquer**


Instance replaced by 3 smaller ones every time it's reduced by half (a constant factor of 2).

Quiz

How many 1-digit mults are performed for n=8 (count them)? Compare to classic.

Exercise

Trace the example down to 1-digit mults (replace x's by 0's). Verify result 7006652.

Composite Default screen

Divide-Conquer Multipy Performance

KALL • CPCS-223 5

Note how 3 const combine (no basic ops needed).

$C_1 \times 10^n + C_3 \times 10^{n/2} + C_2$

What if integer length n is not a power of 2?

⇔ Write recurrence

Exercise

Verify that mathematical result matches count from previous slide for n=8?

⇒ Backward substitutions

need not match number of instances a into which problem is divided.

Size reduction factor b Check Master Theorem

$$T(n) \in \begin{cases} \Theta(n^d) & \text{if } a < b^d \\ \Theta(n^d \log n) & \text{if } a = b^d \\ \Theta(n^{\log_b a}) & \text{if } a > b^d \end{cases}$$

Quiz

What if addition is

© 2022 Dr. Muhammad Al-Hashimi

Composite Default screen

Divide-Conquer Multipy Conclusions

⇒ Asymptotic efficiency

 $O(n^{1.585})$

➡ Pioneering, Karatsuba 1960

 $O(n^{1.465})$

 $O(n \log n \log \log n)$ **□** Improvements

Later optimizations lead to unconfirmed suspicion of optimal lower limit of $n\log n$.

 $\Omega(n \log n)$

of divide-conquer multiplication of large integers? (Hint: check textbook).

Quiz
What's the main application

Applications

KALL • CPCS-223 6 © 2022 Dr. Muhammad Al-Hashimi

Composite Default screen

Divide-Conquer Multiplication **Strategy**

Find a <u>shortcut</u> for performing a basic case, then use divide-conquer to apply repeatedly and hope for enough savings to add up

(Unlike brute force where we make no such effort)

Multiply Matrices

Ouiz

How many element multiplications are performed in this case?

Basic case

$$\begin{bmatrix} a_{00} & a_{01} \\ a_{10} & a_{11} \end{bmatrix} \times \begin{bmatrix} b_{00} & b_{01} \\ b_{10} & b_{11} \end{bmatrix} = \begin{bmatrix} a_{00}b_{00} + a_{01}b_{10} & a_{00}b_{01} + a_{01}b_{11} \\ a_{10}b_{00} + a_{11}b_{10} & a_{10}b_{01} + a_{11}b_{11} \end{bmatrix}$$

Shortcut

Product of 2×2 matrices can be computed via $\frac{7 \text{ multiplications}}{1 \text{ multiplications}}$ instead of the 8 by definition-based n^3 method

Composite Default screen

Divide-Conquer Multiplication Strassen's Algorithm

Do the exercise

 $\square \Rightarrow \text{Basic } 2 \times 2 \text{ case } (m_1 \dots m_7)$

□ Repeatedly (like Karatsuba)

Similar to diagram in Slide 4, each divide by 2 step results in 7 product matrices.

Divide $n \times n$ into $n/2 \times n/2$ submatrices

Quiz Determine constants a,b in Master Theorem?

➡ S Treat submatrices as numbers

Compute 7 product submatrices

Oniz force algorithm?

© 2022 Dr. Muhammad Al-Hashimi

How many additions are needed compared to brute-

KALL • CPCS-223 9