cs223fig23.cdr Tuesday, March 29, 2022 9:01:33 AM Color profile: Disabled Composite Default screen

Quicksort Performace

is the basis of the worst case.

Quiz How many key comparisons occur in this case?

Exercise Give examples of input worst efficiency in quicksort?

© 2022 Dr. Muhammad Al-Hashimi

One is the basis of the best case for *quicksort*, the other \hookrightarrow **Extreme cases**

Split equally (at mid point)

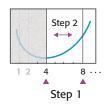
Split at edge (already partitioned)

Give examples of input instances which cause the worst efficiency in guidener? Worst-case sequence

cs223fig23.cdr Tuesday, March 29, 2022 9:01:34 AM Color profile: Disabled

Composite Default screen

Algorithm quicksort


- 1: **if** *l* < *r* **then**
- 2: $s \leftarrow partition(a[l .. r])$
- 3: *quicksort* (a[l ... s 1])

4: *quicksort* (s + 1 .. r])

Quiz Which steps depend on *n*?

Exercise

Use backward substitution to solve the worstcase recurrence for $n=2^k$.

Exercise Compare results obtained from efficiency sequence (textbook) and *WolframAlpha* (recurrence).

© 2022 Dr. Muhammad Al-Hashimi

Quicksort Performance Analysis

Choice of basic operation

Best-case recurrence

 \mathbb{S} Solve for $n = 2^k, k = 1, 2, \cdots$

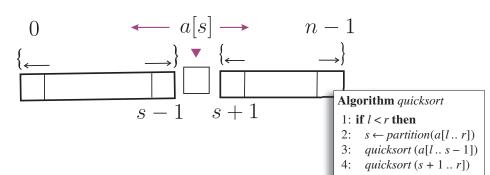
Solution Use *smoothness rule* to extend

Worst-case recurrence

cs223fig23.cdr Tuesday, March 29, 2022 9:01:34 AM Color profile: Disabled Composite Default screen

Quicksort Performance Average Case

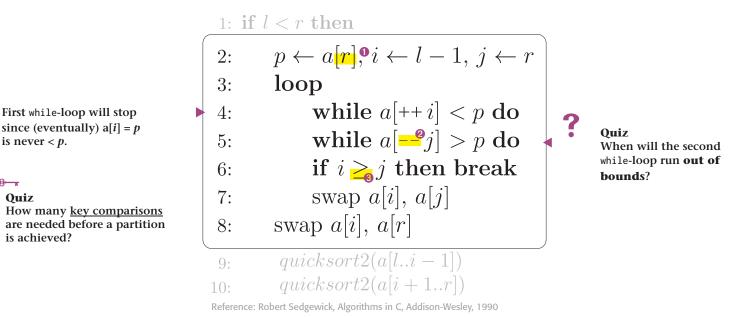
Quiz


What is the <u>length</u> of each sublist in this typical partition scenario?

The 3 ingredients to calculate an average (expected value): data item, dataset, and probability distribution.

Just need to know the number when all positions (=cases for *s*) are equally likely.

© 2022 Dr. Muhammad Al-Hashimi



Questions

How many comparisons typically?
What possible positions for *s*?
How likely each position?

Quicksort Implementation A Closer Look

Algorithm quicksort2

© 2022 Dr. Muhammad Al-Hashimi

is never < p.

is achieved?

Quiz

cs223fig23.cdr Tuesday, March 29, 2022 9:01:34 AM Color profile: Disabled Composite Default screen

Quicksort Implementation Issues to Consider

۲ **Exercise** Modify quicksort2 to use a[l] as pivot.

Choice of pivot element

runaway scan index. Which one is preferred?

Quiz Suggest 2 methods to handle Runaway inner loop (scan)

Exercise What if the pivot happens to be the smallest element?

Careless coding may cause poor performance.

© 2022 Dr. Muhammad Al-Hashimi

KALL • CPCS-223.5

Quicksort Performance Improvement

A modern quicksort

Tiny inner loops with strong locality
 Handle small lists differently

In terms of choice, and efficiently dealing with repeated pivot.

Exercise

Lookup efficiency of insertion sort for nearly sorted lists, report your findings and sources in the discussion group.

© 2022 Dr. Muhammad Al-Hashimi

Better pivot handling

S-way partition is the way[∗]

* Sedgewick and Bently "Quicksort is Optimal"

Quicksort Performance Conclusions

⇒ In-place, time efficiency

 $\leftarrow C_{av} \in \Theta(n \log n) \quad \cdots \rightarrow \\ \Omega(n \log n) \quad O(n^2)$

Quiz What is the space efficiency Compare with mergsort

What is the space efficie of *quicksort*?

© 2022 Dr. Muhammad Al-Hashimi

Divide-Conquer Sort Quicksort

Turing Award 1980

⇒ Invented 1960 by C.A.R. Hoare

-> Good general-purpose sort

Easy to implement
 Well-known characteristics
 Performs well widely
 Low space (in-place)

Subarray-pivot	i = s	j	Scan	Comparisons	Post
[07] 8,3,2,9,7,1,5, 4	3	2	9, 2	9	1,3,2 [4] 7,8,5,9
[02] 1,3, 2	1	0	3, 1	4	1 [2] 3 ,4,7,8,5,9
[47] 7,8,5 , 9	7	6	9, 5	5	1,2,3,4, 7,8,5 [9]
[46] 7,8 , 5	4	3	7, #	4	1,2,3,4 [5] 8,7 ,9
[56] 8, 7	5	4	8, #	3	1,2,3,4,5 [7] 8 ,9
Total Count: 25					
Running <u>quick2.js</u>					
🖡 🕂 Aa — Da	ark 1	• 0	Dark 2	• Light Ha	ck • Input Mono

□ □ □ □ □ □ -> Fragile, not stable

4 + Aa - | Dark 1 • Dark 2 • Light | Hack • Input Mono | 1 // CPCS 223 Analysis & Design of Algorithms 2 // Quickostt - Sedgewick/pivot - right (sildes default) 3 // 2828, Dr. Muhammad Al-Hashimi

© 2022 Dr. Muhammad Al-Hashimi