
cs223fig22A 29 Pr 29 ther Divide-Conquer Sort

Unlike *mergesort* where we split list at mid-point, now pick split positions in a special way.

Change split strategy

Selements a[k<s]<a[s]</p>
Elements a[k>s]>a[s]

Example

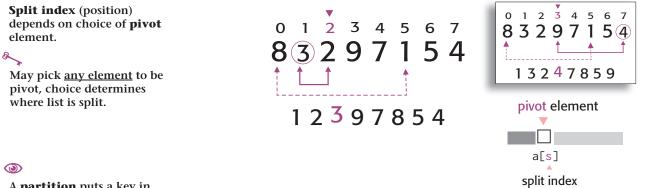
Quiz

Using 4 as split element, what should be the split position (index)? **Hint**: 3 elements smaller.

_			_			6 5	_
i	13	52	4	78	8 5	59	

Therefore

- Elements a[k<3]<4</p>
- Selements a[k>3]>4
- Sa[3]=4 in sort position


KAU • CPCS-223 1

© 2022 Dr. Muhammad Al-Hashimi

cs223fig22.cdr Tuesday, March 29, 2022 7:47:23 AM Color profile: Disabled Composite Default screen

Divide-Conquer Sort Partition Around Pivot

⇒ Split index, s⇒ Pivot element

A **partition** puts a key in sorted position, that's why it works well for the selection problem when the desired key happens to be picked as pivot.

Can it be used to sort lists?

© 2022 Dr. Muhammad Al-Hashimi

Divide-Conquer Sort Sort Strategy

To sort the whole list

Repeatedly partition left and right sub-lists around some pivot until each element is in sorted position

As <u>convention</u>, always choose pivot to be rightmost element, stop if less than 2 elements, always sort left before right.

Try by hand!

	8	L	٦				
	\mathcal{D}	8	S				
□6	S	8	L		3	7	L
6	G	8	Ľ	4	\bigcirc	3	Ľ
$\langle \mathfrak{P} \rangle$	S	L	L	6	7	3	8

© 2022 Dr. Muhammad Al-Hashimi

Divide-Conquer Sort Quicksort

Simply

2:

Algorithm quicksort

Input Subarray $a[l \dots r]$ of keys indexed $0 \dots n-1$ Output Sorted subarray in nondecreasing order

Quiz What is the smallest list which will be partitioned?

1: if l < r then

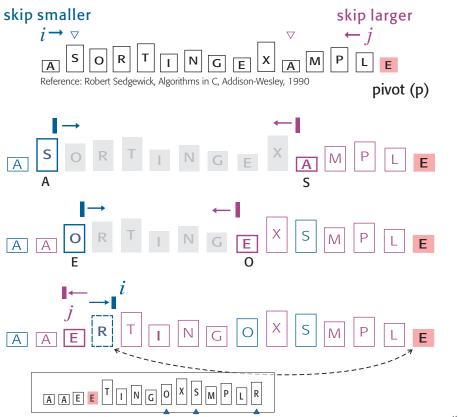
 $s \leftarrow partition(a[l .. r)]$ ▷ around any element in subarray

- quicksort(a[l .. s 1])3:
- quicksort(a[s+1..r)]4:

Human insight not useful, any partition procedure will do

© 2022 Dr. Muhammad Al-Hashimi

Divide-Conquer Sort A Partition Procedure

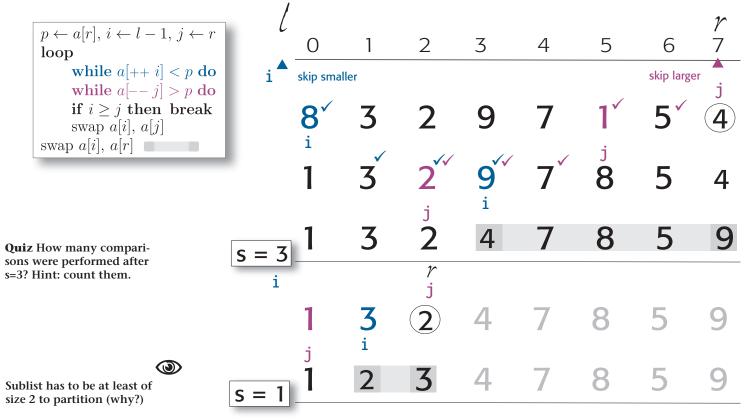

Keep smaller elements this side of list where they belong.

Note *i* stops short of *j* (i < j), i.e., scan not done.

Note *i* skips ahead of *j* (*i* > *j*), no more items to check, partition ends (note extra runaway *j* comp).

Exchange pivot with most distant larger than p (in this case: R).

© 2022 Dr. Muhammad Al-Hashimi


cs223fig22.cdr Tuesday, March 29, 2022 7:47:25 AM Color profile: Disabled Composite Default screen

A Quicksort Algorithm

Quiz Algorithm *quicksort2* Algorithm quicksort How many comps by 1: **if** *l* < *r* **then** Hoare to split a list of *n* Reference: Robert Sedgewick, Algorithms in C, Addison-Wesley, 1990 2: $s \leftarrow partition(a[l .. r])$ elements? 3: quicksort (a[l .. s - 1])1: if l < r then quicksort(s + 1..r])4: Quiz $p \leftarrow a[r], i \leftarrow l-1, j \leftarrow r$ Where would *i*, *j* start if 2: ▷ select rightmost as pivot pivot was chosen left-most loop instead of right? 3: ▷ break condition Line 6 while a[++i] < p do skip smaller 4: find misplaced front > low index scan while a[--j] > p do skip larger find misplaced back ▷ high index scan 5: if $i \geq j$ then break 6: ▷ quit scan if subarray done swap a[i], a[j]7: ▷ swap misplaced elements swap a[i], a[r]8: \triangleright split point *i*, swap *p* in place Quiz Can Lomuto's partition be used to quicksort? Try it. quicksort2(a[l ...i - 1])9: $quicksort2(a[\mathbf{i}+1..r)]$

© 2022 Dr. Muhammad Al-Hashimi

A Quicksort Algorithm Example

© 2022 Dr. Muhammad Al-Hashimi

cs223fig22.cdr Tuesday, March 29, 2022 7:47:27 AM Color profile: Disabled Composite Default screen

A Quicksort Algorithm Example (cont.)

Exercise What's the <u>total</u> number of comparisons		0	1	2	3	4	5	6	7
performed by the <i>quicksort</i> ? Hint : write list reduction sequence. Compare to bubble sort (from formula.)		1	2	3	i 4	7	8	5	j (9) i
Quiz What are indices of the left and right sub-arrays	s = 7	1	2	3	4	7	8	5	9
after a split at i=7?	5 – 7				i			j	
		1	2	3	4	7	8	5	9
Exercise Complete the sort, use the visualization link in the course website (Ans. last slide, next lecture).	s = ?	1	2	3	j 4	5	8	7	9
Exercise Trace recursive		• • •							

Exerci calls of the quicksort (show parameters for each).

© 2022 Dr. Muhammad Al-Hashimi