Algorithm Efficiency

Chapter 2

Space complexity

⇒ How well it performs?

Space efficiency

Time efficiency

⇒ A framework for analysis

Approach to chapter (caution)

A note on homework exercises and weekly tutorial sessions.

© 2022 Dr. Muhammad Al-Hashimi

Analysis Framework

⇒ Input size as parameter ⇒ Measuring run time ⇒ Run time growth ⇒ Algorithm efficiency ⇒ Types of efficiency analysis

© 2022 Dr. Muhammad Al-Hashimi

Analysis of Algorithms Orders of Growth

These functions arise naturally from the way we design algorithms.

Determine resulting growth when n doubles (increases twofold) for each function?

Exercise

How fast f grows as n increases?

n	$\log_2 n$	n	$n \log_2 n$	n^2	n^3	2^n	n!
$ \begin{array}{c} 10 \\ 10^2 \\ 10^3 \\ 10^4 \\ 10^5 \end{array} $	3.3 6.6 10 13 17	$ \begin{array}{r} 10^{1} \\ 10^{2} \\ 10^{3} \\ 10^{4} \\ 10^{5} \\ \end{array} $	$\begin{array}{c} 3.3 \cdot 10^{1} \\ 6.6 \cdot 10^{2} \\ 1.0 \cdot 10^{4} \\ 1.3 \cdot 10^{5} \\ 1.7 \cdot 10^{6} \end{array}$	$ \begin{array}{r} 10^{2} \\ 10^{4} \\ 10^{6} \\ 10^{8} \\ 10^{10} \\ 10^{2} \\ 10$	$ \begin{array}{r} 10^{3} \\ 10^{6} \\ 10^{9} \\ 10^{12} \\ 10^{15} \\ \end{array} $	10 ³ 1.3·10 ³⁰	3.6·10 ⁶ 9.3·10 ¹⁵⁷

TABLE 2.1 Values (some approximate) of several functions important for analysis of algorithms

© 2022 Dr. Muhammad Al-Hashimi

Analysis of Algorithms **Types of Efficiency**

Worst-case efficiency

⇒ Average-case efficiency

Runtime of a *selection sort* always depends on list size <u>only</u>, is this true for the search?

vary for the same input

Algorithm SequentialSearch Input Array A[0..n-1], saerch key KOutput Index of first element of A to match K, otherwise -11: $i \leftarrow 0$ 2: while i < n and $A[i] \neq K$ do 3: $i \leftarrow i + 1$ 4: if i < n then return $i \triangleright$ found if i in range 5: return -1

© 2022 Dr. Muhammad Al-Hashimi

KAU • CPCS-223 4

Runtime growth can

size.

Analysis of Algorithms A General Plan

③ ➡ Amortized efficiency

Some algorithms have <u>different counts</u> for the same input size.

lar to growth of basic operation count.

© 2022 Dr. Muhammad Al-Hashimi

Select suitable input <u>size parameter</u>
Identify suitable <u>basic operation</u>

Check <u>dependence</u> of basic op
Determine count C(n), somehow

• Determine order of growth of C(n)