
Closest Pair of Points

Composite Default screen

Composite Default screen

Closest Pair of Points Brute Force Algorithm

Input Set of $n \geq 2$ points $P_1 = (x_1, y_1), \dots, P_n = (x_n, y_n)$

Output Indices of 2 points with smallest distance in set

Quiz
Compare this brute
force solution to
selection sort?

Quiz

What exactly is the output? (Give examples.)

	1	2	3	4	
1	\times	×	×	×	Note loop indices
2	\times	\times	×	×	generated similar
3	\times	\times	\times	×	to selection sort.
4	\times	\times	\times	\times	

2: for
$$i \leftarrow 1$$
 to $n-1$ do

1: $dmin \leftarrow \infty$

3: for $j \leftarrow i + 1$ to n do

 ${\bf Algorithm}\ BruteForceClosestPair$

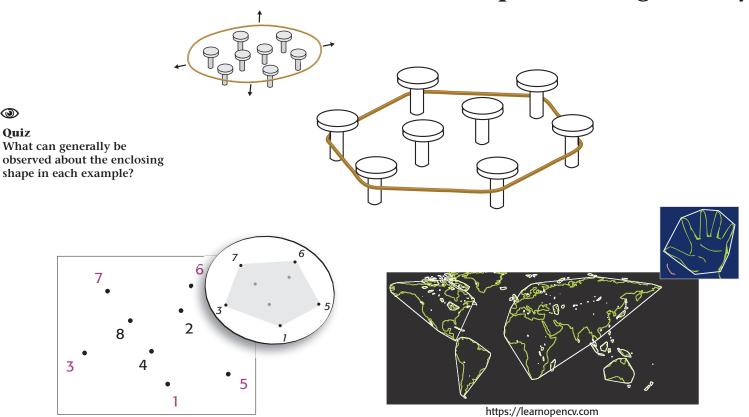
4:
$$d \leftarrow \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$
5: **if** $d < dmin$ **then**

6: $dmin \leftarrow d; index1 \leftarrow i; index2 \leftarrow j$

7: return index1, index2

Quiz

How can the run-time be improved? **Hint**: study the pseudocode.

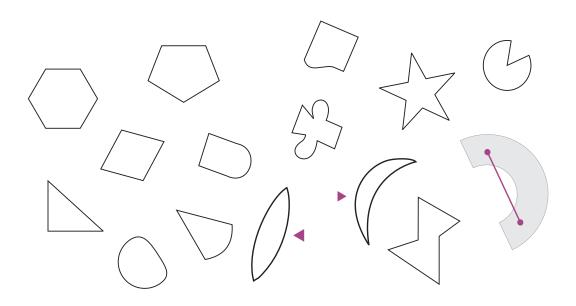

Performance?

Convex Hull Problem

Composite Default screen

③ Quiz

⇔ Computational geometry

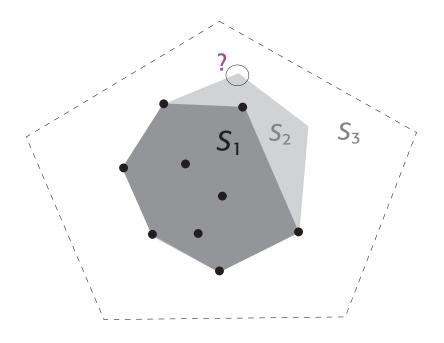


KAU • CPCS-223 3 © 2022 Dr. Muhammad Al-Hashimi

Convex Set of Points

Composite Default screen

⇔ Convex set


Quiz Are points $P_1 \dots P_s$ from previous slide a convex set?

Composite Default screen

Convex Set of Points The Convex Hull

- ⇔ Convex polygon

Quiz Which of the convex sets S_1 , S_2 , S_3 is the **convex hull** for the shown set of points?

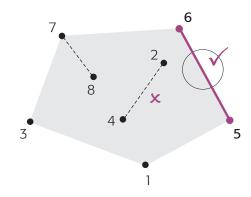
Composite Default screen


The Convex Hull Theorem

⇒ Polygon vertices

The convex hull of any set S of n > 2 points (not all on the same line) is a convex polygon with the vertices at some of the points of S.

Note S_2 (previous slide) is convex but some of its vertices are not in S.



Composite Default screen

Brute Force Convex Hull Algorithm Idea

- **⇔** Extreme point
- □ Line segment

Exercise
Write the input and output parts of a pseudocode.

- ⇒ Observation: line segments
- ⇒ Brute force approach
- ⇒ Steps outline, efficiency
- □ Line segment test (later)

May be performed without a formula in a pen-paper application.

© 2022 Dr. Muhammad Al-Hashimi

KAU • CPCS-223 7

Composite Default screen

Brute Force Convex Hull Programming Challenge

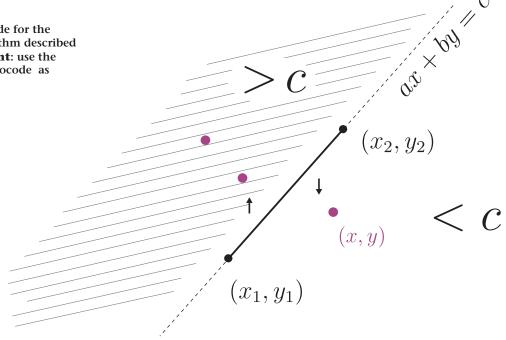
- Exercise 3.3-11 **Hint**: use pseudocode from closestPair as starting point.
- ⇒ Write proper pseudocode
- **⇔** Code your solution
- You can visually see if your solution is correct.
 Use JSDraw to draw c. hull

page to help with the code.

There is a code demo in the assignment support Test instance (homepage)

hashimi.ws/cs223/assignment.php

© 2022 Dr. Muhammad Al-Hashimi


KALL • CPCS-223 8

Composite Default screen

Brute Force Convex Hull Line Segment Test

Write a pseudocode for the brute force algorithm described in the lecture. **Hint**: use the closest pair pseudocode as starting point.

